
TECHNICAL NOTES AND SHORT PAPERS 

A Finite Difference Exponential Approximation 
Method 

By J. W. Layman 

1. Introduction. Numerous approximating or interpolating methods are used in 
numerical analysis, among these being the polynomial, rational function, trigo- 
nometric, and exponential function methods. (For a directory of methods see [1, 
pp. 502-505].) The polynomial formulas are the most frequently used and simple 
finite-difference methods are available for their application. It might be useful from 
a practical point of view and also interesting from a pure finite-difference standpoint 
to have available a similar method with regard to a certain exponential approxi- 
mating function. 

Following the introduction of new difference operations in sections 2-4 below, we 
describe in section 5 a finite-difference method whereby the coefficients an can be 
determined such that the exponential polynomial 

N 

(1) P (k) = aOOk + a 1k + a22k + * + aNN" E annk 
n=0 

takes on N + 1 prescribed values for k = 0, 1, ... , N. 
An illustrative numerical example is presented in section 6 and possible generali- 

zation pointed out in section 7. 

2. Diagonal Differences. We make use of the shift operator El defined by the 
equation 

E'f(k) = f(k + n) 

and the difference operator A defined by the equation 

(2) Af(k) = f(k + 1) - f(k) = (E - 1)f(k), 

with higher order differences defined in the usual iterative manner. 
We now define a new difference operation as follows: 
The diago&al difference S(k)f(t) of a function f(k) defined for discrete integral 

values k = 0, 1, 2, *, N, is the function whose value at k is the kth difference of 
f(t) at t = 0. In symbols 

(3) S(k)f(t) = Akf(o) 

When there is no risk of ambiguity, we may write instead 

(3') Sf(k) = Akf(0). 

Then by Sf(k + a) we shall mean 
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S(kNf(t + a) = Akf(a). 

In the next section we show that Sf(lk + a) is not, in general the same as EaSf(kc). 
The higher order diagonal differences may be defined by iteration: 

S(k)f(t) = S(k)S ( -f(t') 

Again, when there is no danger of ambiguity we write simply 

Snf(k) = SSn 'f(k). 

A word of caution in connection with the higher order diagonal differences 
might be in order. It must be remembered that the exponent on A is an argument 
with respect to operators containing E. This is apparent from the definition (3). 
As an example, consider 

S2f(2) = S(2)S(t)f(t'). 

The right hand side may be written in either of the two forms 

A2S(o)f(t'), S(2)Atf(O), 

both of which reduce to A2A0f(0), where the exponent in AO is an argument with 
respect to the operator A2 to its left. Hence, 

A2A0f(0) = (E - 1)2A0f(0) = 52f(0) - 2Af(0) +f(0). 

To conclude this section we illustrate the tabular calculation of S(3k) and 
S2(3k) for k = 0, 1, 2, 3. The tabulation is as follows: 

k 3k S(3k) = 2k S2(3k) lk 

O 1 1 1 

1 3 2 2 1 1 
2 9 6 4 4 2 1 1 
3 27 18 12 8 8 4 2 1 ] 

Thus it is seen that in tabular form the operation of taking a diagonal difference 
is especially simple, involving merely the determination of the diagonal of so-called 
leading differences. 

3. Some Properties of Diagonal Differences. In order to investigate some of the 
properties of diagonal differences, it is convenient to rewrite formula (3) as follows: 

(4) Sf(k) = Akf(O) = (E - 1)kf(O). 

The second diagonal difference can then be written 

S2f(k) = S(k)S(t)f(t') = AkAJf(O) 

= (E - 1) kAf(O) = ( 
I 

- 1)kf(O) 

= (E - 2)kf(0). 

By induction on n it can be shown that in general 

(5) Snf(kg) = (E - n)kf(?) 
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The diagonal differences of f(k) == ak will be important for our exponential 
approximation in section 5. They can be obtained very easily as follows: 

(6) Snak = (E - n)ka = (a -n)k 

As stated earlier Sf (k + a) = SEaf(k) is not in general EASf( k). That this is 
the case is easily shown in the following manner: 

SElf(c) = /vEf(O) = Ak(A + 1)f(O) = (Ak+l + Ak)f(o) = (1 + 1)Sf(k). 

Mlany other properties and formulas relating to diagonal differences may be 
developed. Some of these are 

S'[af(k) + bg(k)] = aS8f(k) + bSWg(k) 

SnFl(r)f(k)] = 1(r)FgrSnf(k + r) 

Sm[mkf(k)] mkS1f(k). 

The expression ok will occur in the following and for consistency must be defined 
to be unity when k = 0 and zero when k > 0. This is suggested in the following 
manner. If formula (6) is required to hold for a = 1 and n = 1, then 

0 = S(lk) = (E - 1)k1? 

Setting kc = 0 gives 0? = (E - 1)01? = 1. 

4. The Operator Tn. Without some modification, full advantage cannot be 
taken of the result in formula (6), which states that the base of an exponential 
function decreases by unity as a result of taking the diagonal difference. This is 
because the process of taking higher and higher diagonal differences of ak does not 
terminate as does the process of taking higher and higher differences of k un) . This 
can be seen very easily: 

S(a k) = (a - j)k *, Sa(a k) = ok ... Sa+r(ak) = (-r )k etc. 

What is needed is some procedure for discarding the entry at which the zero-base 
exponential takes oni a non-zero value, thus preventing the propagation of non-zero 
entries in higher diagonal differences. For the function f(k) = 3k, this can be 
accomplished by disregarding the k - 0 entry in S3(3k). The resulting diagonial 
differenice is theni the constant funictioni zero. 

1c S (3) 
0 1 
1 0 
2 0 0 
3 0 0 0 

Rather than thinkinigr in terms of disregarding certain entries, it is more con- 
veniient to thiink of the process as equivalent to first shifting the column of entries 
upward, then taking the diagonal difference. This procedure applied to 0k gives 

SE(Ok) = S(Ok?l) = (O)S(ok) = 0( _ lk) = 0, 

a resuilt wlhich is agreeably zero for all k, whereas S(Ok) = (-l)k. 
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Now define a new operation Tn as follows: 
(7) Tnf(k) = (SE)nf(k). 

It can easily be shown that 

(8) Tn(ak) -a(8) (a - n)k. 

In particular 

(9) Ta (ak) - a!Ok 

and 

(10) Ta+l(ak) = O 

when a is an integer. 

5. Exponential Approximation. We are now in a position where we are able to 
determine the coefficients a, such that the function. 

( 11) f(k) = aOok + al k + a22k + + aNN 

takes on N + 1 given values for N + 1 values of the argument spaced at unit 
intervals and translated to the origin. 

Using formula (8), we have 

Tof(k) = aok + a,lk + a22 + a33k + + aNNNk 

Tlf(k) = O + aOk + 2a2 1k + 3a3 2k + .+ NaN(N - 1)k 

T2f(k) = 0 + 2a20k + 6a31k + ... + N(N - I)an(N - 2)k 

T3f(k) = 0 + 6a3Ok + + N(N - 1)(N - 2)a(N - 3)k 

TNf(k) = N! aNOk. 

Now let 

(12) gm = Tmf(O). 

Then we have: 

90 ao + + a2 + a3 + + a. 

91- a, + 2a2 + 3a3 + + NaN 

g2- 2a2.+6a3+ ..+N(N-I)aN 

93- 6a3 + ***+ N(N-1)(N-2)aN 

9N= N! a. 

The solution of this system for the a's is not difficult and is 
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ao go -g + g2933 + + ( 9N 
2! 3! N! 

a1=gl-92+93!94+ + (-l)N (N9-) 

a2 = ~ 21 3! N] 

a2 = 2 92 -93 + 924! 935 + * + (1)N-2 (f9N 2! 

and in general 
N-n 

( 13) an = - E ( 1)ti -.n 
n! i0o ! 

Formulas (11) and (13) provide the desired approximating function. 

6. Numerical Example. Let us now use the preceding results on the following 
data: f(O) = 2, f( 1) = -3, f(2) = 1, f(3) = 4. A close examination of equations 
(7) and (12) reveals that in actual practice the values of gn are obtained as follows 
from the given data. 

k f(k) 
0 2= go 
1 -3 3 = g 
2 1 4 4 4 = 92 
3 4 3 -1 -1 -5 -5 5 = 93 

Before taking each set of differences the top number in the column is separated 
and is not used in taking those differences. This number is one of the g's. The 
diagonal of differences obtained by using the remaining numbers in this column is 
then placed in a new column, and the process repeated. 

Using equation (9), we get for the a's 

ao 2 2-(-3) + 4 -(-5) 47 
2! 3! 6 

-5 19 
a, -3 -4 +2!=- 

1- ~~~2! 2~ 

1 9 
a2 2!(4 -(-5)) = 

1 5 
a3- (-5) = -6 a3 3! = 6 

Therefore the function 

f(k) = -Zok - 19 k + 9 2k _ 5 3k 
6 22 6 

takes on the given values as can easily be checked. 

7. Generalizations. The generalization of the procedures discussed above to 
arbitrary uniform spacing of the data is straightforward. No investigation has been 
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made for the case of non-uniform spacing. Another generalization, in which the 
approximating function takes the form 

N 
f(k) = a,?-, + a2r2 + + aN?,N = E Iik 

i=1 

where the ri are completely arbitrary real numbers, can also be made. The ai can 
be determined by a modification of the method described in this paper, however 
the procedure is extremely cumbersome and very decidedly offers no advantage 
over the obvious Cramer's Rule solution. 
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A New Algorithm for Diagonalizing a Real 
Symmetric Matrix 

By C. Donald La Budde 

Abstract. The algorithm described in this paper is essentially a Jacobi-like proce- 
dure employing Householder and Jacobi orthogonal similarity transformations 
successively on a real symmetric matrix to obtain, in the limit, a diagonal matrix of 
eigenvalues. The columns of the product matrix of all the orthogonal transforma- 
tions, taken in the proper order, form a complete orthonormal set of eigenvectors. 

1. Introduction. In this paper we describe a Jacobi-like procedure for di- 
agonalizing a real symmetric matrix by means of orthogonal similarity transforma- 
tions. The earliest such procedure was proposed by Jacobi in 1847 which involved 
the use of plane rotations, but required a computer search for the largest off-diagonal 
element, in absolute value. Later, procedures were proposed in which the off- 
diagonal elements were annihilated in sequence. The latter method, known as the 
cyclic Jacobi method, was discussed by Forsythe and Henrici (1). They showed 
that convergence of this method would only take place if the angle of rotation lay 
in a closed interval properly contained in the open interval ((-)ir, ( + )i). The 
method described here employs successive Householder and Jacobi orthogonal 
similarity transformations in a sequential fashion to obtain, as in Jacobi methods, 
in the limit, a diagonal matrix of eigenvalues. The columns of the product matrix 
of all the Householder and Jacobi transformations employed form a complete set of 
orthonormal eigenvectors. Throughout this paper we will confine ourselves to the 
consideration of real symmetric matrices. 

2. General Description of the Algorithm; Definitions and Notations. The 
general procedure may be described as follows: beginning with an arbitrary sym- 
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