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4. Conclusions. This method appears to be attractive for use in the problem of 
calculating all eigenvalues and a complete set of orthonormalized eigenvectors for 
the following reasons: 

(a) Like the cyclic threshold Jacobi method, there is no search for largest pivotal 
elements. 

(b) Unlike the cyclic threshold Jacobi method there is no limitation on the angle 
of rotation in the Jacobi rotation as Forsythe and Henrici (1) showed was necessary 
for convergence. 

(c) Each iteration creates n - 1 zeros at the cost of 3 square roots as compared 
to one zero in the Jacobi method at the cost of 2 square roots. 
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The Calculation of Certain Bessel Functions 

By D. B. Hunter 

1. Introduction. The problem of calculating Bessel functions in a digital computer 
has engaged the attention of a number of authors in recent years, and a variety of 
methods is now available. Apart from the obvious use of the power-series for small 
argumenits and the asymptotic expansions for large arguments, the methods which 
have been proposed include those based on the recurrence-relations (Stegun and 
Abramowitz [6]; Goldstein and Thaler [3]), phase amplitude methods (Goldstein 
and Thaler [2]), and methods based on quadrature formulas (Fettis [1], Luke [5]). 

Particular difficulties arise in the case of the modified Bessel functions of the 
second kind, Kn(z) with z positive; for unless z is small, the power-series for Kn(z) 
resolves into a difference of two large numbers which are almost equal, with a con- 
sequelnt loss of significant digits. The asymptotic expansion and the phase-amplitude 
method, on the other hand, do not yield reasonable accuracy until I z I is fairly 
large. Thus for medium-sized values some other approach must be used. For such 
values the quadrature methods are convenient. 

2. Quadrature Methods. The methods of Fettis [1] and Luke [5] are based on 
the application of numerical integration to the expression 

(1) JCK (z) = e-zcoshO cosh vO dO. 
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The method used is the trapezoidal rule: 

(2) f F(t) dt = h [F(o) + Z F(rh) - (h), 

where h is some suitable interval. It is known that for a certain class of integrals 
E(h) is remarkably small; see e.g. Fettis [1], Luke [5], and Goodwin [4]. 

Fettis shows that provided h is suitably chosen equation (2) without the error 
term can be used to estimate Kv(z) with high accuracy. The method can be used for 
any positive value of z. However, for a given value of h, the error increases with 
increasing z. Thus it is necessary to decrease h progressively for large values of z. 
The object of the present paper is to deduce an alternative expression for which 
the error associated with a given value of h decreases as I z I increases. The method 
is applicable for non-negative integer values, n, of v and general complex values of z. 

We shall start from the alternative expression to (1); 

7r( 
1 

)n 
co 

(3) Kn(Z) = -z) h 
IF(n+1) e sn2 dp 

(See e.g., Watson [8].) On making the substitution 

(4) ~~~~~~~t = A/- sinh l(p 

it is easy to show that if z is real this transforms to 

(5 ) KKn(z) = \/7re fL et t2n (2z + t2)n-1/2 dt. 
F(n + ~) (2z)n . 

By analytic continuation, this result is valid for I arg z I < 7r. If arg z = 7r, Kn(z) 
can be calculated from the expression 

Kn(zeT) = enTiKn(z) - i7rIn(z). 

In(z) in this equation can be calculated from the approximations given by Fettis 
and Luke. 

We shall estimate the error in approximating (5) by the trapezoidal rule by a 
method devised by Turing [7] and applied by Goodwin [4] to integrals of the form co 

ex2f(x) dx, where f(x) is even. By considering the integral of the function 

e w2f(W) 

1-e-2Tirw/h 

of the complex variable w round a rectangular contour r, say, with vertices at 
i X iia, where a > 0, Goodwin showed that the error E(h) is given by 

( 6 ) E ( h ) = 2e( ) e e(t2+2i (a1h)ft - ja) dt 

This holds provided f(w) is analytic within and on r. 
In fact, Goodwin obtained (6) in the special case a = 7r/h; but, in order to 

avoid the branch-points of f(w), we must stipulate that 

(7) a < I Im V/-2zJ. 
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It follows from (6) that 

(8) IE(h) I _ g(a) f et2 jIf(t - ia) j dt 

where 

2 ae(a-2,T/h) 
(9) g9(a) 1= e- 

Equation (5) can alternatively be approximated by the modified trapezoidal 
rule of Luke [5]. The error E'(h) of this approximation can be estimated by in- 
tegrating 

e-w2f(W) 

1 + e-2TiwIh 

round F, and is given by 
= 

1 E+=a(a-27r/h) (e tf(t - ia) dt 
(10) El (h) ~2ea(2)je 1+e-2TaIh-2ritIh 

It follows that E' (h) also satisfies inequality (8). 

3. Limits on the Error. We shall now use (8) to obtain some bounds for the error 
E(h). Those bounds will usually overestimate the error considerably, but they will 
be sufficiently sensitive to show that the relative error decreases as I z j - Co, and 
to produce a fairly simple formula for large z. 

It is convenient to consider the cases n = 0 and n ? 1 separately. 
Case 1. n = 0. In this case it is easy to show from (8) that 

I E(h) ? _ g(a) e-t 1 2x - a2 + t2 j-1/2 dt, 

and this, in turn, leads to 

g (a) e l'- Ko(x - a) if x > la2 

(g(a)e l/2a2[Ko(2a2 - x) + irlo(4a2 x)] if x < l2. 

If we set a = 7r/h, it follows from (11) and the asymptotic expansions of Io(z) 
and Ko(z) that the relative error, E(h) when I x j is large satisfies 

(12) E(h) I < g(7r/h)I sec 0 11/2 

where 0 = arg z. 
The above limits are quite satisfactory if I x j is large compared with I y 1. How- 

ever, if I y I exceeds j x 1, a closer estimate can be obtained by subdividing the range of 
integration in (5) into three parts, separated by the points t = y/2a and t = y/a. 
The result (omitting the details of the working, which are somewhat tedious) is: 

(13) E(h) < g(a) 1/2 + V2 ye-2/4a2 + r e-y2/a2 

Again, we can deduce a limit on j E(h) j for large y, namely: 

(14) -1 E(h) I < g(ir/h)l cosec 0 1/2 
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Case 2. n > 1. Apart from the factors outside the integral in (5), the error in 
this case is easily shown to satisfy 

E(h) | < g(a) ] et2(a2 + t2)n(2 I Z + a2 + t2)r-12 dt. 

If we now fit into this the inequalities 

(2 + t2)' fa< i ? ? 
( t < 2v1(a2v + t2) f v > 1 

which hold for all values of a and t, we obtain the result: 

I E(h) I < 22n-5/2 (a)[a2n(2 1 z + a2)n-"12 r (2) +a2nr(n) 

+ (2 | z + a2)n-1"2r(n + 2) + r(2n)]. (n ? 2) 

If n = 1, an extra factor V< must be included in the right-hand side. 
If i z I is large the relative error is subject to 

(16) E e(h) I < 22n-512g(7r/h) [1 + 2(+) (ir)2n] 

if n ? 2. Again, an extra factor N/'2 must be included if n = 1. 

4. Numerical Examples. As a first example, consider the error in estimating 
Ko(x) by the trapezoidal rule with h = 1,for real positive x. 

If x is very large, inequality (12) shows that 
- 47r2 

e (h) I- _ -8r 1-431 X 10l' 

Even when x is fairly small, it is possible to obtain quite a high degree of accuracy. 
For example, when x = 2, the minimum value of the right-hand side of (11) is 
found to occur when a = 1.9675 approximately, and this leads to I E(h) I < 
5.360 X 10 9. The corresponding relative errpr is subject to I e(h) I < 6.369 X io-9. 

This compares fairly well with the actual value of e(h), which was found by nu- 
merical experiment to be about 9.589 X 10-1O. 

The case of purely imaginary values of z is interesting in view of the relation 

Kn(ye-l127) = 
i 

2rel/2(n+l) iHn (1) (y). 

This means that by separating the result into real and imaginary parts we obtain 
values of the Bessel functions Jn(y) and Yn(y). In his paper, Luke mentions that no 
integral representation of Yn(y) suitable for calculation by the trapezoidal rule for 
real values of y appears to exist. Effectively, equation (5) with z = yel1/2Ti provides 
such a representation. 

The error in this case is given by inequalities (13) and (14). Consider again the 
variation with y of the error corresponding to the value 2 for h. If I y I is large in- 
equality (13) shows that 

1e-8 
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and when y = 2 we obtain, on putting a = V/2 in (13), the result I E(h) I < 
3.835 X 107 , corresponding to an error of less than 2.441 X i-O in Ho(" (y). 

5. Alternative Method. The following alternative expression to equation (5) 
was suggested to the author by one of the referees: 

(17) Kn(Xz) = r/ne( +z/2) L e-zt2t2n(2X + t2) n-l2 dt, 

valid for Rl(z) > 0. 
The error in evaluating the integral in this equation by the trapezoidal rule is 

readily shown, by an argument similar to Goodwins, to be: 

( 18) E(h) = 2ea(za-271h) L et(t ia) [2X + (t - ia)2]n-12 dt 
(18) E (h) =t2+i(z Iht(t e-2ra/h-2rit/h 

We shall not give a detailed error analysis here, but shall simply point out that, as 
in Fettis' method, the error increases with increasing z, so that the method is most 
suitable for small values of z. 

6. Practical Application of the Method. The methods described above for 
calculating Kn(z) are both quite convenient for programming for a digital computer. 
Considering first the method based on equation (5), it is clear that, for a fixed 
value of h, the values of (rh)2 e-, h can be held as program constants, or, alterna- 
tively, can be simply generated from the single value h2ne-h2. Then nothing more 
elaborate than square roots are needed in forming the terms of the approximation 

(2). 
Similarly, in evaluating the right-hand side of (17) by the trapezoidal rule, the 

values of (rh)2n(2X + r2h2)n-12, for fixed X and h, can be held as program constants; 
the values of e-zr'h can then be generated, as before, from the single value e-z2. 
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In the original form of this paper, real values of z only were considered in equa- 
tion (5). The author is indebted to the referees for pointing out the advantages of 
allowing z to take complex values-this extension considerably enlarges the scope 
of the paper. As mentioned earlier, equation (17) is also due to one of the referees. 
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Tables of Zeros of Cross Product Bessel Functions 
ip'(t) Y,'(4) - J,'(4) Y,'(t) = 0 

By Helmut F. Bauer 

In the calculation of frequencies for various modes of oscillations in a container 
comprised by a sector of the annulus between two concentric circular cylinders filled 
to a height h with incompressible liquid, in wave guide theory and in many other 
applied problems involving annular or sectional cavities, the roots of the cross 
product of Bessel functions 

(1) A-(t) = J0'(k,)Y,'(t)-Jp'(t)Yp'(ki) -O, p _ 0 

are of considerable interest. The functions J,( ) and Yp( ) are Bessel functions of 
order p of the first and second kind respectively. Here k is a parameter and 
O < k < 1. 

If p = 0 

(2) to = J-(0) Y,(ki3-J (ki) Y, = 

and if km-> 0, the zeros of A/,() approach those of Jp'(t) = 0. 
J. McMahon [1] gave an asymptotic expression for the roots of equation (1). 

However, the lowest root was not known, until D. 0. North [2] and H. Buchholz 
[3] mentioned its existence. Curves showing values of the roots of the expression 
(1) are shown in a few cases by D. Kirkham [4] for p = 0, 1, 2, 3, 4. The purpose of 
this paper is to extend the range of the index p and present the lowest ten roots 
for p 0(1)25, k = 0(0.1)1.0. Bridge and Angrist [5] give the first eleven zeros 
for p = 0(1)12 and k = 1.1, 1.2, 1.5, (0.5)5.0. The present tables extend the range 
of k. The calculation of the roots was accomplished by interpolation of A,( ) = 0. 

For the calculation of the derivatives of the Bessel functions the series expanison 
was used in the argument range 0 < x ? 5.0 for the Bessel function of first kind and 
0 < x < 5.75 for the Bessel function of second kind. For larger arguments the 
asymptotic expansions were employed. For the cases in which argument and order 
of Bessel functions are nearly equal the results of Reference [6] have been used. 
The roots are correct to at least the fourth digit. 
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