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On Convergence Criteria for the Method of 
Successive Over-Relaxation 

By C. G. Broyden 

1. Introduction. The solution of a set of n simultaneous linear equations, 

(1.1) Mx = c 

where M is non-singular and both Mll and c are real is often attempted by iterative 
methods, which rely on the systematic improvement of an approximate solution. 
In order to simplify the algebra, it is convenient to consider the system. 

(1.2) Ax = b 

where 

(1.3) A = DM, b = Dc 

and D is a diagonal matrix chosen so that the elements of the principal diagonal of 
A are unity. 

A may then be expressed as the sum of three matrices 

(1.4) A = I + L + U 

where I is the unit matrix and L, U are lower and upper triangular matrices re- 
spectively. 

The type of iterative process considered here is that known as the extrapolated 
Gauss-Seidel method, or the method of successive over-relaxation (SOR). 

Convergence criteria have been established for this method by Ostrowski [3] 
for the case where All is symmetric. This paper derives sufficient conditions for the 
convergence of the method when applied to problems involving non-symmetric 
matrices. 

2. The SOR Method. Let xi+, and xi be successive approximate solutions to 
the equation 

Ax = b 

The SOR method is defined by 

(2.1) xi+, = xi - c[(I + U)xi + Lxi+l - b]. 

(See, e.g. [2], where, however, a different notation is used to that employed here). 
Eliminating U from the above equation by substitution from equation (1.4) gives 

(2.2) (I + coL)(xi+, - xi) = -c(Axi - b). 

Now the residual s- corresponding to the approximate solution xi is defined by 

ei = Axi - b. 
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Therefore 

ei+1 = Axi+1 - b 
and 

A '(,ei+l- i) = xi+, xi 

Hence equation (2.2) becomes 

(I + coL)A1(ej+l - ei) =-c-i 

which gives the recurrence relation 

(2.3) Ei+l = [I - wA (I + coL)- ]Ec. 

This has the form 

(2.4) es1 = (I - B)Ei 

anid a sufficient condition for the convergence of processes of this type will now be 
derived. 

THEOREM 1. A sufficient condition for the convergence of processes where the residual 
vectors obey the equation 

(I - B)(E, 

is that there exist matrices S and G such that 

S > 0 

and 

G = BTS + SB - BTSB > 0. 

(The notation S > 0 means that S is symmetric and positive definite, and the 
superscript T indicates transposition.) 

Proof. Let fi = EiTSEi . Then since, by hypothesis, S > 0, fi > 0 for E- 5 0. 
Hence, fi -O 0 as i -X oo is a necessary and sufficient condition for convergence. 
Now 

fi+1 = Et+lSSi+l 

= ei(1- BT)S(I - B)ei 

EiT(S - G)Ei. 

Let 4i = jTGei . Hence, f[+? = fi - 4i . A sufficient condition for f, to tend to 
zero with increasing i is that there exists a positive constant k such that 

(2.5) 0i_ kfi 

for then fj+? < (1 - k)fi and the sequence fi converges. 
Since S > 0, all its eigenvalues are real and positive, and if the largest is X.ma. 

then 

(2.6) fi < XmaxEi Tei 
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(See, e.g. [1], p. 65). Now since S = Sl, the matrix G is symmetric and its eigen- 
values are real. Denote the smallest by Amin. Then Xi _> AminfiEi ([1], p. 65). 
Hence, from equation (2.6) 

> AUmin 
4).> fi. 

Xmax 

Now if G > 0, gmin> 0 and equation (2.5) will be satisfied. This proves Theorem 1. 
COROLLARY. If S > 0 and G < 0 i.e., G is negative semidefinite, then the process 

will never converge. 
Gal. 4 MT 8437 p. 5 Take 10-23-14 Gx 71 10-11-63 

Proof. If G < 0, qi < 0, and fj+j > fi . Hence fi can never be reduced to zero, 
and the corollary is proved. 

Theorem 1 will now be applied to the SOR method. Since, from equation (2.3) 
B = coA (I + coL)f1, a sufficient condition for SOR to converge is that there exists 
a matrix S where S > 0 such that 

(2.7) c(I + cL T)-1ATS + cLSAA(I + LL)>0 

(2.7)~~~~~~~~~ co 2(I + cgL T) -'ATSA (I + coL) -1> ?. 

This condition may be simplified by using the following lemma. 
LEMMA. A necessary and sufficient condition for P > 0 is that QTPQ > 0 where Q 

is any non-singular matrix. 
Proof. Let Qx = z. Then XTQTPQX = zTPz. But since Q is non-singular, for 

every non-zero x there exists a non-zero z, and conversely. The lemma follows. 
Since (I + coL) is non-singular, the sufficient condition 2.7 may be transformed by 
the lemma into 

(2.8) co[ATS(I + coL) + (I + coLT)SA - coATSA] > 0 

3. Symmetric Matrices. Suppose that M is symmetric. Put S = D-1M-1D-1. 
Condition (2.8) becomes 

(3.1) co[D-1(I + coL) + (I + cLT)D1 - coM] > 0 

Equations (1.3), (1.4), and the assumed symmetry of M, give 

M = D-1(I + L + U) = (I + LT + UT)D-1. 

Equating the upper triangular partitions of these two representations of M gives 

(3.2) D-1U= LTD- 

Hence equation (3.1) reduces to 

(3.3) co(2 - w)D1 > 0 

Now if M > 0 it follows from the lemma that S > 0 and since if M > 0 then 
D > 0, the condition (3.3) obtains. Hence SOR will converge, if M > 0 and 
O < co < 2. If, however, co < 0 or co < 2 the matrix G becomes negative definite, 
so by the corollary to Theorem 1, SOR will not converge for w lying outside the 
range 0 -> 2. 
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4. Non-Symmetric Matrices. Take for S in equation (2.8) the matrix (AT)-1A-1. 
Since A is non-singular this automatically fulfills the conditions of symmetry and 
positive definiteness. The condition for convergence becomes 

A '(I + wL) + c(I + cwLT)(AT)-1 _ 2I > 0 

and since A is non-singular, the lemma gives 

c(I + wL)AT + coA(I + L T) - 2AAT > 0. 

Decomposing A by equation (1.4) and simplifying gives 

(4.1) c(A + AT) - 2[(I + U)(I + UT) - LLT] > 0. 

A second condition, analogous to that given by equation (4.1) may be derived by 
putting S = I in equation (2.8). This gives 

wAT(I + wL) + w(I + wLT)A - w2ATA > 0. 

Decomposing A and simplifying gives the sufficient condition for convergence 

(4.2) c,(A + AT) - C02[(I + UT)(I + U) - LTL] > 0. 

It will now be shown that if A + AT > 0 a positive X may be found such that 
conditions 4.1 and 4.2 hold. 

THEOREM 2. If P > 0 and Q = QT there exists a positive co such that P + cQ > 0. 
Proof. Let fi = XTpX. Since P > 0 all its eigenvalues are real and positive. Let 

the smallest be Xmin 

fi -> XminiXX 

Now Q is symmetric, hence all the eigenvalues are real. Denote the algebraically 
smallest by A.min . If 

f2 = X TQX 

f2 >_ Amin XTX 

and 

f = xT(P + coQ)x ? (XXmn + (9pm in)XX. 

Consider now the two cases 

(a) Amin _ 0 

In this case f > O for all c > 0. 

(b) Amin = -i.minl < 0 

f > (Xmin 
- W I Amin |)XTX 

f >O for w< Xmin and x 0 O 
| Amin | 

This proves Theorem 2. 
A further sufficient condition for convergence may be derived from equation 

(4.2). 
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Define the matrices P and Q by 

P = (I + LT)(I + L) - UTU 

Q = (I + UT)(I + U) -LTL 

P+Q= A +AT. 

Equation (4.2) becomes 

(4.3) JP- w(&, -1)Q > 0. 

Hence SOR will converge for co = 1 if P > 0. A similar condition may be derived 
from equation (4.1) in the same way. 

5. Conclusions. Theorem 2 indicates that conditions (4.1) and (4.2) will be 
satisfied if A + AT is positive definite, and a sufficiently small positive value of co 
is used. Now any matrix A may be expressed as the sum of symmetric and anti - 

synunetric components, and the matrix A + AT is merely double the symmetric 
component. Thus if a matrix is decomposed in this way and the symmetric com- 
ponent is positive definite, it will always be possible to find an co such that successive 
over-relaxation, or possibly successive under-relaxation, will converge. This is 
clearly a more general form of Ostrowski's criterion, to which it reduces in the 
limiting case when the anti-symmetric component becomes zero. 

Condition (4.3) although derived from the same equation, is rather different 
in character. It shows that SOR will converge for co = 1 if 

(5.1) (I + L T)(I + L) - UTU > 0. 

This leads to the conclusion that matrices exist for which an important factor in 
guaranteeing convergence of the method of successive over-relaxation is "lower 
triangular dominance". In the limiting case when U becomes zero, (5.1) holds, 
and if co takes the value unity the equations are solved in one step. 

That the conditions P > 0 and A + AT > 0 are not equivalent is probably 
best demonstrated by examples. 

(5.2) A [1 -2] 

In this case A is strongly anti-symmetric, and its symmetric component is positive 
definite although neither P nor Q possess this property. Successive relaxation will 

1 
lead to a solution for co sufficiently small, e.g., 4. 

[2 1 ] 

Here A is lower-triangularly dominant. P is positive definite, but A + AT and 
Q are not. Convergence is guaranteed for co = 1. 

It should be emphasised here that although conditions (4.1), (4.2) and (4.3) 
are sufficient for convergence, they are not necessary. In particular, the largest 
value of co for which (4.1) and (4.2) is valid may well be exceeded without the 
process diverging. They do, though, show that there exist two quite definite types 
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of non-symmetric matrix for which SOR will always converge provided that a 
suitable value of X is chosen. 
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On Inverses of Finite Segments of the 
Generalized Hilbert Matrix 

By Jean L. Lavoie 

The purpose of this note is to show that two theorems given by Smith [1] on 
inverses of finite segments of the generalized Hilbert Matrix can be proved in a 
simple manner by using results from the theory of generalized hypergeometric 
series. 

The usual notation for generalized hypergeometric functions will be used: 
P 

(1) pFQ(z) = pFQ (al...|ZaP= H ( QK 
j=1 

where 

r (o + o 

See Erdelyi [2], Chapters 2 and 4 for details. 
Let H. represent a finite segment of the generalized Hilbert matrix, i.e., 

(2) Hn = (hij), hij = (p + i + j - 1),-1 i,j = 1, 2, n. 

Here n is the order of the segment and obviously 

p 3-1 - 2, .. - (2n -1). 

We shall assume that the above conditions on i, j, and p hold throughout this 
paper. 
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