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Fermat Numbers and Mersenne Numbers 

By J. L. Selfridge and Alexander Hurwitz 

An IBM 7090 computer program, and results of testing Mersenne numbers 
Mp = 2- - 1 with p prime, p < 5000, have been described by Hurwitz [1]. This 
paper describes modifications made to his program, and further computational 
results. The main results are that the Fermat number F14 is composite and that 
2P- 1 is composite if 5000 < p < 6000. 

The computer program, originally written with the idea of testing 2' - 1 for 
n = M13, soon showed that the machine makes occasional errors. At least four 
machine errors occurred during runs on this number before two results agreed. 
Due partly to the immediate availability of standby time, the program was then 
launched in the region 3300 < p < 5000. 

When this work was nearly complete, the routine was modified to incorporate a 
check modulo 23- 1 after each squaring and another after each reduction modulo 
2- - 1. These checks enabled the routine to recover and proceed automatically 
after a machine error. A message was printed that a squaring (or reduction) error 
had occurred. In fact, this happened several times. 

Another modification enabled the program to compute 32 modulo the Fermat 
number Fm = 22 + 1. When n = 2- - 1 the residue was output, with a result 
congruent to -1 if and only if Fm is prime. 

After testing the program using F1o (see Robinson [5]), we proceeded to test 
F14. The computation was divided into 64 parts, and the results of the first 25 of 
these were checked against those of Paxson [3], who very kindly sent us copies of 
his intermediate residues. The rest of the computation was done twice, with com- 
plete agreement. We have also checked the final residue obtained by Paxson [3] in 
the testing of F13 . The result that F14 is composite was announced in [2]. 
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TABLE 1 

m n R mod 236 R mod 236- 1 R mod 235 -1 

7 127 035100542404 514165207640 053153335617 
8 255 531023263263 407614543114 344141643032 

13 8191 607301005536 611677367012 031455470517 
14 16383 622476273512 016631677043 161031465216 
17 20 176536764625 415751561367 155276133751 

TABLE 2 

p R p R p R 

5023 35472 5479 17227 5783 15446 
5077 27063 5503 26142 5813 25753 
0081 74607 5527 41614 5839 24031 
5099 67662 5573 34740 5851 37460 
5113 20010 5581 31446 5857 11252 

5153 52273 5591 52563 5869 00764 
5309 40357 5641 21342 5879 52670 
5333 44244 5647 40775 5897 30763 
5351 05171 5653 50244 5923 16616 
5387 54357 5669 57031 5953 32461 

5407 51133 5689 32731 5987 66731 
5419 70701 5693 47014 
5443 51737 5701 33577 
5471 52563 5737 07151 
5477 33022 5749 47641 

In addition, as a debugging aid for those who wish to test F17, we computed 
32 modulo F17. The complete testing of F17 would take 128 full weeks of machine 
time on the IBM 7090. It seems much more economical to search for small factors 
of F17 than to perform this test. 

The final residues in the testing of F7, F8, F13 and F14, and the residue of 3220 

(mod F17), have been put on punched cards, together with check sums. A summary 
of these residues is given in Table 1, and copies of the cards are available for checking 
purposes. The seven intermediate residues of 32f (mod F14) where n-- 0 (mod 
2048), and the complete values of 31024 and 365536 are also on cards in the same 
format. In Table 1 the residue of 32n (mod Fm) is described by listing its 12 least 
significant octal digits, and its remainder in octal modulo 236 - 1 and modulo 2 - 1. 

Early in 1962, again partly because of available standby time, the Mersenne 
program, modified to check modulo 23 - 1, was run for all 2' - 1 for which no 
factor was known, with 5000 < p < 6000. No primes were found. As in Hurwitz 
[1], the five least significant octal digits of S,_1 are listed in Table 2. 

The results for p < 3300, mentioned by Hurwitz [1], have all been checked 
against the corresponding SWAC [5] and BESK [4] results. Reruns confirmed four 
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7090 errors, four BESK errors (2957, 2969, 3049 and 3109), and an incorrect SWAC 
result for 1889. The SWAC (October 1962) confirmed the 7090 residue. 
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Lucas' Test for Mersenne Numbers, 
6000 < p < 7000 

By Sidney Kravitz and Murray Berg 

Alexander Hurwitz [1] reported that he had applied Lucas' test to investigate 
the primality of the Mersenne Numbers Mp = 2- 1, p a prime, 3300 < p < 5000, 
and discovered that M4253 and M4423 are prime numbers. Hurwitz [2] further statest 
that he tested all prime exponents between 5000 and 6000, where the corresponding 
Mp was not known to have a factor, without discovering any new Mersenne Primes. 

TABLE 

p R p R p R 

6007 07707 6247 00472 6659 75241* 
6037 21420 6257 36710 6661 27165 
6043 21605 6269 57356 6679 13275 
6047 37000 6299 71037* 6701 07636 
6053 53471 6329 25136* 6709 05700 
6073 41646 6337 21676* 6733 35544 
6079 15712 6359 51351 6763 01753 
6089 32615 6361 10027* 6779 74306* 
6091 02043 6451 23476 6791 41143 
6133 42630 6469 51252 6823 14573* 
6151 63451 6547 06546 6833 26431 
6211 71252 6571 67142 6857 63102 
6217 07377 6577 45051* 6907 46461* 
6221 24166 6581 74210* 6911 63345 
6229 06517 6599 77554 6971 65345 

6991 50365 

The authors have tested the Mersenne Numbers 6000 < p < 7000 without 
finding any new primes. A list of the five least significant octal digits of the S i1th 
remainder from the Lucas test (S1 = 4) is given in the Table. Where a prime is 
missing from the list it indicates that a factor of the corresponding Mersenne 
Number was found by Riesel [3, 4] or that an unpublishedt factor was found by 
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