
Finite Difference Schemes for Differential 
Equations 

By Milton E. Rose 

Introduction. Consider the boundary value problem 

Lu(x) = f(x), a < x < b 

u(a) = u(b) = 0 

for the positive definite Sturm-Liouville operator 

(1) ~~~~~L = d p(x) d + q(x) 

and the related variational problem for the functional 
b ~~~~~~~~~~b 

(2) Q(u) = ] (pu'2 + qu') dx - 2 fu dx 

viz., 

min Q(u) 
uE Q 

where the class Q consists of smooth functions u(x) satisfying u(a) = u(b) = 0. 
Following Ritz, the solution of the variational problem may be discussed within 
the framework of the direct methods of the calculus of variations [1] by extending 
Q to the class of continuous functions with piecewise smooth derivatives. For pur- 
poses of deriving finite difference equations for the boundary value problem it is 
usual to consider continuous piecewise linear functions which reduce (2) to an easily 
evaluated sum, the Euler equations for which yield the difference equations. Thus, 
if p = 1, this results in approximating u" by the second difference quotient 
(ui+l-2ui + ui_l)/Ax2. However, for problems with singular points this simple 
procedure may fail [10]. 

In this paper we illustrate certain theoretical and computational advantages 
which result for difference schemes by considering a canonical class of approximating 
functions chosen as piecewise smooth solutions of Lu = 0. In this case the resulting 
minimizing sequences for (2) lead, via the Euler equations for Q(u), to a system of 
difference equations Au' = where A = (Aij) is a symmetric, tri-diagonal matrix. 
We call difference equations derived in this manner patch equations. The solution, 
for a given subdivision of (a, b) by points xi , X2, , * Xn i iS X = (U(Xl), U(X2), 

u(x,)) where u(x) is the solution of Lu = f. Moreover, if K(x, y) is the Green's 
function for L on (a, b), so that LK = a(x - y), we also have in= K(xi, xj)Ajk = 

ik * Thus the structure of such difference equations parallels that of the differential 
equation. 

The more familiar analytical approximation to (1) based upon expansions with 
a complete set of functions also permits a parallel development here. Corresponding 
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to a given subdivision of the interval (a, b) one may introduce a basis fr?(x)l 
for which the finite difference equations express conditions determining the co- 
efficients of u(x) = limnoo Z>i.n uiri(x). 

The first part of this paper develops this formalism for Sturm-Liouville prob- 
lems; its application to several examples are given in (1.2) in order to illustrate 
certain novel features of the resulting difference equations. In the second part we 
investigate selected aspects of the method for partial differential equations. A 
discussion of the approximate solution of the difference equations corresponding to 
elliptic problems by certain "alternating direction" methods, for example, is pos- 
sible in a simple manner. Finally, an extension of the method to the heat equation 
is described; by way of illustration a somewhat novel scheme which may be suitable 
for calculating temperatures inside a circular plate is discussed (Example D). 

I. Difference Equations for Sturm-Liouville Operators 

I.1 Patch Difference Equations. For the purpose of introducing notations 
which will be used throughout this paper it will be convenient to review the deriva- 
tion of finite difference equations appropriate to the Sturm-Liouville problem 

Lu(x) = f(x), 

u(a) = u(b) = 0 a < x < b 

by means of variational arguments (for simplicity we shall limit our present dis- 
cussion to the case in which L, given by (1), is non-singular on (a, b)). 

Consider a fixed but arbitrary subdivision of the interval (a, b) by points a = 

x0, xl, ... Xn+ = b. Let ri+(x) denote the solution of Lu = 0 in (xi, xi+,) for 
which u(xi) = 1, u(xi+?) = 0 and let rJ-(x) denote the corresponding solution in 
(xi-, Ixi) for which u(xi-,) = 0, u(xi) = 1. The functions 

Fri?(x), Xi ? x ? xi+1 

ri(x) = ir(x), Xi_1 ? X < Xi 

olo X f (xi_li IXi+i),I 

i 1, 2, , n, defined on the set of overlapping intervals { (xi- , xi+,) } forming a 
patch-like covering (a, b) will be called a patch basis for the operator L on (a, b); 
Qn denotes the manifold spanned by the basis { ri(x) }. Since ri(xj) = bij, if un(x ) E Qn 
then u.(x) = Zi==i u'(xi)ri(x) and u4(x0) = u4(xn+l) = 0. Clearly, if Ki(x, x) 
denotes the Green's function for L on the patch (xi-,, xi+,), ri(x) = Ki(x,xi)l 
Ki(xi I xi), i = 1, 2, ... , n. 

Finally, we introduce the inner product 
b 

(u, v) = f u(x)v (x) dx 

and extend L on Q as the symbolic function 

Lri(x) = p(xi+l)ri'(xi+i-)6(x -xi+i) 

(4) - p(xi)[ri'(xi+) - rj'(xj-)]6(x - xi) 

- p(xi-1)ri'(xi-1+)6(x - Xi-,) 
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where ri' (?) =d ri( ?). Throughout this paper we shall assume this extention dx 
without separate comment. Thus, for u'(x) = Zi=1 u,'ri(x), we shall write 

n 
Lu (x ) = ZutLri(x) 

and 
n 

(rj, Lun) = Z u (rj, Lri) 

The formula 
n n 

p Wtun (i)u4 iXi+1 - = ,(ri Lrj) = (u, Lu ) 
__1 

i ,j=1 

results bv writing ul (x?1- ) = uirl+?(xi+,-) + uiri'(xi-), etc. and rearranging 
terms. Hence, for un(X) E Qn the quadratic functional Q(un) given in (2) is easily 
evaluated: 

n ( r~~~~~ ~~~Xi +1 
Q(un) = t ()n()ni iz+ - 2 f u (i)()d 

Q (u p Lu 2-( u d; 
-(z,n LUn) - 2(n 

this corresponds to the formula Q(u) = (u, Lu) - 2(u, f) for smooth functions 
u(x). The Euler equations for 

min Q(un) 
unE On 

may be expressed as 

(Lu -f, aun) = 0 

for arbitrary bUn Qn ; equivalently 
n 

(5) Z: (ri, Lrj)ujn = (r,f), i = 1, 2, n 
j=1 

or, more explicitly, 

p(xii)r i'(xi?i-)u?i+ - p(xi)[ri'(xi+) -ri(xi-)] 

(5') - p(xii_)ri'(xi_l+)Un-1 = r,(x)f(x) dx, (5/) i-~~~~~~~~~~~~~~x- 

i = I 2 I ,n 

with uo = un+1 = 0. 
The system (5) (or (5 ')) furnishes a system of finite difference equations appro- 

priate for the solution of (3). To emphasize their particular form we shall call them 
the patch equations corresponding to problem (3). 

The matrix ((ri, Lrj)) is symmetric and tri-diagonal, the latter being apparent 
from (4). To show the symmetry, since Lri(x) = Lri-1(x) = 0 in (x,1-, xi), 
Green's formula yields 
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JXi+1 

0 = f {r(x)Lri_(x) - ri_(x)Lri(x)} dx 

= p(xi)r$,_(xi-) - p(xi_i)ri'(xi-l+) 

so that, noting the relations (ri, Lri1) = p(xi)ri_j(xj-) and (ri1, Lri) = 

p (xj_) rj(xi_+) , we obtain (ri , Lri-1) = (rri-1, Lri). 
For smooth functions admissible to the original variational problem, w(x) E 

the function 
n 

TnW(X) - E w(xi)ri(x) 
i=l 

in Qn iiterpolates to w(xi) at x = xi, i = 0, 1, , n + 1. A simple, but important 
result is that the solution un(x) of the patch equations (5) is given by Tnu(X) 
where u(x) is the solution of (3), i.e., the solution values u(xi) necessarily satisfy 
the patch equations (5'). For, clearly, if u(x) is the solution of (3), 

rXi+1 
f Ki(x, y)[Lu(x) - f(x)] dx = 0, i = 1, 2, , n 

xi-' 

where Ki(x, y) is the Green's function for L on (xi-,, xi+,). Thus 

p(xi+?)Ki(xi+?, y)u(xi+i) - p(xi_i)Ki(xi_j, y)u(xii1) + u(y) 

f J Ki(x, y)f(x) dx, i = 1, , n. 
xi- l 

These last equations furnish a system of connection formulae between the values 
of u(y) on the patch intervals. Setting y = xi in the ith equation, placing ri(x) = 
Ki(x, x,)/Ki(xi, xi) and recalling that Ki'(xi+ , xi) - Ki'(xi- , xi) = -1/p(xi) 
we obtain (5'). 

We shall illustrate the form of the patch equations in specific examples in Sec- 
tion I.2. For the present we merely note that the treatment of a more general 
boundary condition of the form u (b) + f3u(b) = 0, say, may be accomplished by 
requiring that the Green's function Kn(x, y) (and, correspondingly, the patch 
function rn(x)) satisfy the same condition at x = b. A similar modification is 
possible for certain singular problems. For the validity of our discussion in such 
cases it is only necessary to modify (4) appropriately; we shall assume this to have 
been accomplished without separate mention of the fact. 

It will, in practice, be necessary in general to approximate the values (ri, f) 
occurring in the right hand terms of (5) by approximate values, say (ri, fn), 
where (ri, fn) -> (ri, f) for n -> cc If u4(x) E Qn is the resulting approximate 
solution it will be useful, then, to obtain an estimate for maxxl uin(X) - u(x) 
To accomplish this we shall show that 

b 

TnU(X) = f K(x, y)f(y) dy 

where Kn(x, y) is a separable kernel on Qn X Qn which approximates the Green's 
function K(x, y) for L on (a, b). 

We recall that the patch function ri(x) is obtained by normalizing the Green's 
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function Ki(x, xi) on the patch (xi-, xi+,) and extending it by vanishing outside 
the interval. Denote the subinterval (xi, xi+,) by Ji, i = 0, 1, , n and let 
K(x, y I J,) denote the Green's function for L on J% extended so as to vanish wherever 
x or y or both lie outside Ji. 

THEOREM. Let 
,n 

Kn(x, y) = , K(xi, xj)ri(x)rj(y) 
i,j=1 

and 
n 

Hn(x, y) = ZK(x, y I Ji). 
i=O 

Then 

K(x, y) = K (x, y) + H (x, y) 

and 

lim Kn(x, y) = K(x, y) 
n->oo 

uniformly for x, y in (a, b). 
We sketch the proof. First note that ri(x) is a piecewise smooth solution of 

Lu(x) = 0 with ri(xj) = b j . Suppose y E Jj , x f Jj . Then, for fixed y, K(x, y) - 

Kn(x, y) is a regular solution of Lu(x) = 0 in each interval Ji(i # j) which vanishes 
at the end points. Hence K(x, y) = Kn(x, y) for x f Jj . When x C Jj , Kn(x, y) 
is a regular solution of Lu(x) = 0 with boundary values equal to K(xj, y) and 
K(xj+1, y), while Hn(x, y) is a solution of Lu(x) = a(x - y) which vanishes at 
xj and xj+l . Thus K(x, y) = Kn(x, y) + Hn(x, y). 

Now note that Hn(x, y) contains at most one non-zero term so that, since the 
jump in the derivative of K(x, y I Ji) is normalized at x = y, 

[Hn(X,y) I < max IK(x, y I i) I< cl Ji . 
x,y 

Thus the theorem easily follows. 
The solution of (3) may be represented through the Green's function as 

rb 

u(x) = K(x, y)f(y) dy 

and, as we have indicated, the solution of the patch equations (5) may be repre- 
sented, uniquely in n , as 

n 

Tnu(x) = E u(xi)ri(x). 

Since H'(xi, y) = 0, clearly, then, 

Tnu(x) = (J K(xi, y)f(Y)) ri(x) = (Z Kn(x, y)ri(x)) f(y) dy 

or 
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rb 

(6) T.u(x) f K>(x, y)f(y) dy. 

Thus, if 
b 

~n (X) =f K"2(x, y)f.(y) dy, 

we obtain the desired truncation estimate 
;b 

max 7 (x)-u(x) ? < max j K(x, y)[fn(y) - f(y)] dy 
x x a Ib 

+ max Hn(X, y)f(y) dy 

If we note that (6) is equivalent to 
n 

u(xi) = , K(xi, xj) (rej, f) 
J=1 

we may summarize our results as follows: 
To solve Lu = f on (a, b), u(a) = u(b) = 0, for values of the solution u(x) 

at an arbitrary set of points x1, x2, * , xn of subdivision of (a, b), first construct 
the patch basis {Ir'i(x)}; then the function u" (x) E Q2n which interpolates to u(x) 
at xi, X2, *, xn solves the variational problem 

min Q(of), 
<nE Qn 

i.e., the solution un(x) satisfies the Euler conditions 

(Lun - f, on) = 0 

for arbitrary oan(x) E Qn . The solution of the system of patch equations 
n 

(rj , Lri-)uin = (f, rj), j = 1, 2, * , n 

resulting from the preceding orthogonality conditions is given by Ui7 = u(xi) and 
n 

u(xi) K(xi, xj)(rj,f), i = 1, 2, n. 
j=1 

Thus, also, 
n 

E, (ri, Lrj)K(xj, Xk) - Sik. 
j-1 

For the more general problem Lu (x) + s (x)u (x) = f(x) the interpolation Tnu (x) 
need no longer satisfy the corresponding patch equations (ri , Lun + sun - f) = 0, 
i = 1, 2, ... , n. Nevertheless the solutions un(x), considered either as minimizing 
sequences for the variational problem or as solutions of the integral equation 

fb Ib 
un(X) + Kn(x, y)s(y)un(y) dy = K (x, y)f(y) dy 

may be shown to converge to u(x) (cf. Section I.2, Example C.). 
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In practice the construction of a patch basis for L itself may be difficult to 
achieve. A similar difficulty often arises also in attempting an approximation by 
an expansion using a basis formed by the eigenfunctions of L; in this case one may 
attempt to write L = M + N where an eigenfunction basis for M1 is known and 
where N may be treated as a perturbation. An analogous procedure applies also in 
the treatment of difference equations; in fact, by choosing a sufficiently small mesh 

interval, the operator - may usuially be chosen to furnish a patch basis. 

I.2 Examples of Patch Difference Equations. The following examples may 
serve to illustrate the discussion of the previous section. 

Example A. 

Lu (x)__2() f (x) O < x < 1 

with u(O) = uo, u'(1) + u(1) = 0. 
Assuming a uniform subdivision of (0, 1) by points Xk = kh, k = 0,1, , n + 1, 

we have for i = 1, 2, , -1, 

r( ) {(x - xi+1)/h, Xi+l ?X > ?Xi 
(x- xi-,)/Ih, Xi ? x ? xi-i 

and, for i = n, 

rn(x) 
(x - 2)/(Xn - 2), 1 ? x _ Xn 

4/ (X - 
Xn-Ol)h, Xn - X > Xn-1 

while ri(x) = 0 for x f (xi-, xi+,), i = 1, 2, * , n. From (4), 

Lri(x) = -I [(x - xi+) + (x -xi-,)] + (x - xi), i # n 

and 

Lrn(x) = -U(X - Xn-1) + (2h + 1) 6(x- Xn)- h h(h + 1) 

so that the conditions 

(ri , Lu -f) = 0, 1 2 n 

lead to equations 

A1: (Un ? un1) +2i = (ri,f), i # n A, ~~~~h 7;jUh 

and 

1 
n_ 

(2h?+1) Unn 
(r 

A2 h Un i + h(h + 1) (rn 

with ucf = Uo 

In the present case, equation A2 may be obtained by applying A1 when i = n 
and using the first order difference approximation (un+1 - un )/h + un+ = 0 
to the boundary condition u' (1) - + (1) = 0. On the basis of our earlier remarks we 
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may conclude that the introduction of a higher order difference approximation to 
this boundary condition (sometimes suggested) cannot improve the approximation. 

Example B. To illustrate the treatment of an operator with a singular point 
consider 

d d1 
L.(x) -- - u(x) + -u(x) = 1, 0 < x < 1 

dx dx x 
with u(O) finite and u(1) = 0. The solution of this problem is u(x) = - x X log x, 
the origin being a singular point of the differential equation. 

With respect to a given subdivision of the interval (0, 1) the patch functions are 

(Xi -x2-1)/\ Xi-1 -< X _ Xi 

r2(x) = - X )/xii, Xi _ X _ Xi+l 

0), X _Xi+i ) X _ Xi 

where Ai = X- _ Xi-,. The patch equations (5) assume the form 

-2x +1 + 2xi2 + i= (ri, 1), 

i= 1,2, **,n. 

Noting that the coefficient of u0n vanishes we see that the condition un+ = 0 
insures the unique solution of this system. 

Example C. Consider 

Lu(x) - _u"(x) + p2(X)U(X) = g(x), 0 < X < oo 

with 

u(0) = 0, u( oo) = 0. 

A familiar treatment of this problem is to consider a succession of approxima- 
tions on finite intervals (0, R) as R -4 oo. On each such interval a patch basis with 
respect to - d2/dx2 may be used to construct a system of integral equations express- 
ing connection formula for values of the solution between patch intervals as de- 
scribed at the end of the last section. 

A more novel treatment is the following: Let 0 = xo, xi, ... *, xn+ = oo and, 
on the interval (xi-,, xi+,), let 

Liu(x) = -u"(x) + p2(Xi)u(X) 

and let ri(x) denote the patch function obtained by normalizing the Green's 
function for Li on (xi-,, xi+,). Then, with pi = P(xi), 

rsinh pi(x - xi-)/sinh pi(x - xi-,), xii _< x _ xi 
ri(x) = sinh pi(xi+l - x)/sinh pi(x?+l - xi), xi _ x ? xi+, 

CO X _" Xi+j) X _ Xi-l 

for i = 1,2, , n-1, and 

rsinhPn (X - Xn-l)/sinh Pn(Xn - Xn-1)X Xn-1 < X _ Xn 
rn(x) = exp[-pn(x - xn)], xn ? x < oo 

0) x <? Xn-1 
. 
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For simplicity, assume xi+, = xi + h, i = 0, 1, , n- 1. If we neglect the 
difference p(x) - pi on Ix-xi I _ h, the resulting patch equations are 

sinh (u_p.h ? +i) + [2pi%coth (pih)]ui' = (ri, g), i = 1, 2, , n- 1 

and 

pn ( Un-h + p4[1 + coth (Pnh)]u,, = (rn, g) sinh (pn h) 

with uo' = 0. Here the condition at infinity has been incorporated in the last 
equation. 

II. Difference Equations for Partial Differential Equations. In Part I we 
discussed the possibility of deriving accurate difference approximations for Sturm- 
Liouville operators. Since many typical problems of mathematical physics involve 
the Laplace operator in some separable coordinate system it is natural to investigate 
the possible extentions of our methods to such problems. 

II.1 Boundary Value Problems. Consider the boundary value problem 

(7) Lu(x, y) = f(x, y) 

for a self -adjoint elliptic operator L on a domain D in the (x, y)-plane with boundary 
G on which, say, u = 0. With 

Ku, v) = ff u(x, y)v(x, y) dx dy 

and 

(8) Q(u) = (u, Lu) - 2(f, u) 

this problem may be associated with the variational problem 

min Q(w) 
wdE 

for an admissible class Q of smooth functions vanishing on F. 
For purposes of deriving finite difference equations it is natural (cf. [2]) to 

triangulate D and extend the admissibility conditions for the variational problem 
by allowing continuous piecewise linear functions on the triangulated subdomains. 
More generally, D may be subdivided into subdomains {Di} with piecewise smooth 
boundaries { Fi}; for admissibility w(x, y) may be arbitrary but continuous on 
every connected set of segments of Fi, its values on Di being taken as the solutions 
of the homogeneous problem Lu = 0 in Di having the assumed values of w on Fi. 
The resulting Euler equations, corresponding to equation (5), become now con- 
ditions between line integrals of w(x, y) over neighboring boundary segments. 

A considerable simplification results when the operator L is separable in a 
rectangular domain. Let 

M d px + q(x) 
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and 

N = d py ay+ q() 

and suppose L = M + N. Introducing a lattice x = xi, y = yj, i, j = 0, ?1, ... 
we may associate a patch basis {ri(x) } for M and a basis {sj(y) } for N separately 
and consider as an admissible class Qmn functions of the form 

(9) w(x, y) = Z wijri(x)sj(y) 
i,j 

where wij = 0 if (xi, yj) lies outside D. The variational problem 

min Q(u) 
WE mn 

results in the system of Euler equations 

(10) E wkl[(risj , slMrk) + (risj, rkNsl)] = (risj, f) (xi, yj) E D' 
k,1 

the expression on the left involving the nine points wi+,,j+, 8, 0 V , = 1. 

Unlike the one-dimensional problem, the solution u(x, y) of (7) will not, in 
general, satisfy (10); nevertheless our previous results make it plausible that (10) 
affords a more accurate system of difference equations than would in general, result 
from straightforward differencing of (10). See [6]. 

The fact, also, that (10) is obtained from a variational principle provides a 
convenient setting for discussing gradient iterative techniques (cf. [3], [4], [5]) 
for approximating the solution of this system. An example is furnished by the 
following "alternating direction" scheme: Considering both Uk, vk to be given by an 
expansioni in Qmn let 

vk u + X4 = 0 

t l l ) U ~~~~+1 - k + 'Uak 
0 

where, withf = Esijf(xi, yj)ri(x)sj(y), 
=k MUk - f NVk 

and 

= NV- f ? 
MUk+l 

The equality in (11) is to be understood in the sense that the left hand terms are 
orthogonal to an arbitrary function in Qmn- 

Clearly, 

Q (Vk) = Q (Uk) - 2X(k , LUk ?+ X2(k L Lk) 

and 

Q (uk+l) = Q (vk) - 2 (k , LVk _ + ? 2(,k L LI k) 

(12) = Q(u k) - 2X(Kk, LUk -) + X2(Kk LCk) 

- 2gK(fk , Lvk - ])+ ? 2(/k L1k> 
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Now 

X(Kk Luk 
Vk ? /+ (k Lvk _ 7) = xK(k 'k) + A(4kf ,k) 

+ X2(N (Vk Uk) 2 k) + I(M (uk+l vk) ,k) 

xK4k 4,k) + '(Kk 2,k) + X2(N 4k, q5k) + gK2(KM,k, {k) 

and, comparing with (12), we observe that the inequality 

Q(uk?l) < Q(uk) 

may be insured by requiring, separately, the inequalities 

_ ((fk IL/k) < ((k Ik) + X(KNk, (k) 

and 

X (p, LMk) _ (k, k) + MKM;, f ) 

i.e., 

(4k I?k) ? 2(,k 4k) + (N4f, k) 

( 13 ) g(+, N1,k) ? 2(t, i/) + [lkj q ) 

Hence, if 

{p, o-glb f(w, Mw) (w, NwA) 
WL-il { (W, W) (w, W) 

IT, 1i = { (w, Mw) (w, Nw) 

these latter inequalities may be insured for all k by fixed values X, , satisfying 

2 
X -< - and, 

p-a 

(14) 2 

A simpler criterion, more useful in practice, results using Frobenius' estimates 

{p, a} < {maxl (r ,Mrj1,maxZI (si,Nsi) I} 

and 

{e,a} < {min II (ri, Allri) -Z (ri, MIrj) I(1min II (si, Nsi) (- s Z (i, Nsj) Ii}. 
$ < 2 i$j 

We imay note that, when (qk, M4k) = (qk, NYk) as may occur, for example, when 

L = 
, 

+ (13) is satisfied for any choice of N, A. The results of Lees 

[5] suggest that (13) may be unnecessarily restrictive in other cases also. 
Finally, we may remark that if we allow the values X, A to be altered at each 
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step of the iteration, the choices 

k __ ( k k) 

(pk, M jk) 
- 

(k I Nk) 

and 
k ( (4,k k) 

- (A,pl N4,k) (Ak, M4,lk) 

will serve to maximize the difference Q(uk)- Q(uk+l). 

11.2 Parabolic Equations. In order to illustrate the treatment of initial value 
problems we shall consider, finally, the equation 

(16) 
au 

(dt t) + Lu (x, t) =- O, a < x < b, t > O 
at 

with the initial condition u(x, 0) = uo(x) and the boundary condition, say, u (a, t) = 

u(b, t) = 0.* Here Lu = -(p(x)tz)x + q(x). Our previous discussion suggests 
the following, purely formal, procedure for associating difference equations with 
this problem: assume u'(x, t) E Qn2 given by 

n 
(17) un (x, t) u j(t)rj(x)Z 

where {ri(x) I forms a patch basis for L with respect to a given covering of (a, b) 
by patch intervals; then impose the conditions 

(18) ( at) + L r 0, i = 1 2, , n 

The resulting equations 

d?u1n Uj(tt) (19) ~ {(ri, rj) dt t) + (ri, LrjU = 0, i = 1, 2, n, 

a system of differential-difference equations, are to be solved with initial conditions 
u n(O) = uo(xi), assuming the boundary conditions have been incorporated into 
(19). By suitably replacing the derivative term in (19) by a difference term various 
"explicit" and "implicit" difference equations result. To prove the stability of the 
resulting difference equations (and hence their convergence) it is sufficient to show 
the boundness of the time growth of certain related energy norms (cf. Lees [5], 
[7], [8]). The following variant of the usual energy argument for (16) will serve to 
motivate our discussion of corresponding estimates for difference equations and 
indicate certain differences from Lees' treatment. 

We first multiply (16) by the Green's function K(x, y) for L on (a, b), integrate 
and note the boundary conditions to obtain the integral equation 

rb 

(20) f K(t, X)Ut(t, t) dS + u(x, t) = 0 

* It will become evident, on the basis of the discussion given in Part I, that more general 
boundary conditions appropriate for L may be treated without essential modification. 
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(we have set ut = au/at). We now multiply (20) first by u(x, t) and integrate with 
respect to x to obtain 

(21) 2 d (u(t), Ku(t)) + (u(t), u(t)) = 0 

where 
b 

(u(t), v(t)) = u(x, t)v(x, t) dx 
and 

,b b 

(u(t), Ku(t)) =J K(x, y)u(x, t)u(y, t) dx dy. 

Similarly, we may multiply (20) instead by ut(x, t) and integrate, obtaining 

(22) (ut(t), Kut(t)) + 2 d (u-(t), u(t) 0. 2 d ut),ut)=0 

From these expressions the "energy" norm estimates 

(21') (u(t), Ku(t)) < (u(0), Kw(O)) 

and 

(22') (u(t), u(t)) < (u(0), u(0)) 

result, recalling that the integral kernel formed with the Green's function is posi- 
tive definite. 

Representing the solution u'(x, t) E Qn2 of the differential-difference system (18) 
by (17), an analogous argument yields corresponding estimatest 

(u'(t), K'u'(t)) <(u'(0), Knu'(0)) 

and 

WM(t, u (t) WM u 0, u (0) ). 

For the representative "implicit" and "explicit" difference equations related 
to (18) by time differencing discussed below, it is the analogue of (21) which 
furnishes the appropriate norm estimate for the former, while (22) is appropriate 
for the latter. 

In order to illustrate these remarks, consider first the implicit system 

in 

(23) - E [Avj(t)(rj, rj) + vj(t)(ri, Lrj)] = 0, i = 1,2, , n 
A\t j=1 

which results from (18) by replacing duin( t)/dt by the backward difference 
Uini(t)/\t = [u (t) - u (t - At)]//At. Multiplying (22) by K(xi, Xk) and summing 

we obtain 

(24) , E Avi(t)(ri, rj)K(xj, Xk) + Vkk(t) = 0, k = 1, 2, n 

t Since (4, K+) is positive definite, so also is the matrix (K(xi , xj)), and hence ()n, K-O-). 
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since Z1j Kik(Pi ) Lrl) = 5k, . Now, for functions O(x, t), ,6(x, t) represented by (17), 

(f(t), tV(t)) = Z qi(t)ij (t) (ri , rj). i j 

Hence, multiplying (24) by (rk , ri)[vi(t) + vi(t - At)], summing on k, 1, we 
obtain 

(25) t [(v(t), K'v(t)) - (v(t - At), K'v(t - At))] 

+ (v(t), v(t - At)) + (v(t), v(t)) 

(compare to (21)). Now, 

(v (t), v(It- AWt > _ -2(v(t), v(t)) - 2(v(t-t) v(t-a)) 

If we introduce the norm 

1 v(t) lm = (v(t), K'v(t)) + 1 (v(t), v(t))} 

(25) yields, finally, 

(26) || V(t + 'At) lm V fl v(t) llim 
Consider now the explicit system 

n 

(27) t Vwj(t) + 7 wi(t)(rj, Lri) = 0, j = 1, 2, n 

obtained from (18) by approximating duin(t)/dt by the forward differenee 
VUin (t)//At = [Uin (t + At) - u7n( t)]/,At and introducing the approximation 
(ri , rj) = 5ij. 

We multiply (27) by Kjk and sum on j to obtain 

' Z Vwj(t)Kjk + Wk(t) = 0- 

Multiplying next by (rk , rj)Vwj( t), summing over k, I and noting the relation 

2Z Wk(t) (r, , rj)Vwj(t) = 2(w(t), Vw(t) ) 
kil 

= (w(t + A\t)) w(t + At) ) - (w(t), w(t) ) - (Vw(t), Vw(t) ) 

we then obtain (compare to (22)) 

fl w(t + 'At) W = w(t) II, 
(28) o- 

Vwj(t)K(xj, Xk) (rk, rl )Vw1(t) + fl VW(t) le 

Atj,k,l1 
where 

II w(t) |lex = (w(t), w(t) )112 

Let ,u denote the smallest eigenvalue of (K(x,, xj)); then 

,Vwj(t)K(xj Xk)(rk ex 
j,k, I 
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Hence, if we impose the stability condition 

(29) 2o-t ?1 
At 

the estimate 

(30) || w(t + At) flex < 11 W(t) flex 

results. 
A more useful form of the condition (29) is obtained by noticing that, because 

(K(xi, xj))-1 = (ri, Lrj), an upper bound for q1 may be obtained through the 
estimate (Frobenius) 

1 < max E (ri, Lrj) 
i j 

Thus (29) may be replaced by the simpler estimate 

(31) 2o > max E (ri, Lrj) 

For the heat equation ut = uxx, (27) assumes the form 

Ax 
[ui(t + At) - ui(t)] - - [ui+i(t) + ui_i(t) - 2ui(t)] = 0 

and (cf. Example A of I.2) maxi Ej I (riLrj) I = 4/Ax; (31) then becomes the fa 
miliar stability condition of Courant, Friedrichs and Lewy [9], viz., 

1 >'At 
2 Ax2 

We shall conclude this paper by illustrating the application of the methods 
discussed in this section to the following 

Example D. Solve the heat equation with cylindrical symmetry 

ut(x, t) -- 
I 

a(x d ) u(x, t) = O, O < x < I 

with the initial conditions 

u(x, 0) = uo(x), 0 < x < 1 

and the boundary conditions 

u(0, t) finite, u(1, t) = 0, t > 0 

by an explicit difference equation. 
Appropriate to the present example is the inner product 

1 

(4, 4) = f 4(x)4(x)x dx. 

The patch basis with respect to a given subdivision of (0, 1) are given by the 
functions 
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1, 0 x X ix 

ri(x) = (log x/x2)/(log xl/x2), xl ? x ? x2 
0, x ? 0, x > X2 

(log x/xi+?)/(log xi/xi+,), xi < x < xi+, 
ri(x) = (log xjxi-1)/(log xil/x,_), Xi1_ < x > xi 

0, x f (xi_1, xi+i) 

i=2, 3, **,n. 

Hence, assuming 

w(x, t) = I w4(t)ri(x) 

we obtain, with L = x -, 
x ax ax' 

(r1, Lw(t)) = [w2(t) - w(t)]/(log xl/x2), 

D1: (ri, Lw(t)) = [wi+1(t) - wi(t)]/(log xi/xi+,) 

+ [Wi(t) - wi-(t)]/(log Xi/Xi-1) 

i=2, 3, ,n. 

The choice of a uniform subdivision, xi+1 -X = h, results in the familiar 
approximation 

(ri, Lw(t)) - I + 2h) Wi+1(t) + (1- h -) wi 1(t)] + +wi(t) 

the accuracy of which is least near the origin. 
Of more novel interest is the subdivision of (0, 1) by the geometric sequence 

of points xj+l = a a > 1 j = 0, 1, * , n. Then 

1 ~~~~~~2 
(ri, Lw(t)) = log a[wi+1(t) + wi_i(t)] + loga wi(t) i = 2, 3, n, 

and 

(r1, Lw(t)) = og [w2(t) - w1(t)]. 

Let oi = (xi+, - xi-)xi and introduce the approximation (ri, rj) = tbij 
Corresponding to (27) we then consider the following system of explicit difference 
equations: 

wj(t + At) = wj(t) + t [wj+1(t) + wj-1(t) - 2wj(t)] = 0, 
oc, log a 

D2: j = 2,3, **,n. 

wi(t + At) = wi(t) + t [w2(t) - wl(t)] 
o- log a 

subject to the initial conditions wj(O) = Uo(Xj) and the boundary condition 
Wn+1(t) = 0. 
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Unlike (27) where o- is fixed this system contains the variable -j . The previous 
discussion applies, however, providing we replace the value a- in (29) by a- = 
minj o- = a -2n. The resulting stability condition (31) then takes the form 

a 12n log a A\t < g 
t4 
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