
The Autocorrelation and Joint Distribution 

Functions of the Sequences a j2 a (j + T)2t 

By David L. Jagerman 

1. Introduction. The present day extensive use of Monte-Carlo procedures 
necessitates the careful investigation of methods for the generation of random 
numbers. In its simplest form, the underlying principle of many Monte-Carlo 
procedures finds its expression in the following theorem [1]. 

THEOREM. Let (xi),' be a sequence equidistributed over (0, 1) and let f(x) be a 
function Riemann integrable on (0, 1), then 

N 1 

, f(x() - Nf f(x) dx. 
j=1o 

Thus, the theorem states that sample averages approximate the value of an integral. 
It is to be noted that the only property of the sequence (xj)i1 employed is its 
equidistribution. 

In applications, one may employ several equidistributed sequences simul- 
taneously; accordingly, new requirements may arise. The sequences may be em- 
ployed, for example, as bases for decision, in which case it may be required that 
they be independent. Thus depending on the Monte-Carlo problem considered, 
equidistributed sequences may be required to possess other random number char- 
acteristics. Let the sequences (xj)i1, (xj+?)i1 be designated respectively by x, x(r), 

in which r is a nlon-zero integer, then an additional desirable characteristic is the 
statistical independence of x, x(r). A sequence exhibiting such characteristics is 
({aj2} )1 in which a is an irrational number [2]. The symbol {x} is employed to 
designate the fractional part of x. 

However, from the viewpoint of the practical utilization of the sequence sug- 
gested above by means of a digital computer, it is necessary to replace a by a 
rational number, and hence, to lose some of the precision with which the character- 
istics discussed above are satisfied. Accordingly, the sequences which will be studied 
are 

= 2 = (j + 

The integers a, m are taken relatively prime. Of particular interest will be the 
deviation of the characteristics of these sequences from the ideal random number 
characteristics. 

Let p(x) be given by p(x) = - {X}, then the autocorrelation function A/(r) 
of a sequernce (xj) 1 is defined by 

1iN 
= lim - E p(xj)p(xj+r). 

N-0oo N j=1 
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For the sequence to be studied, this takes the form 

I>T = 1 Ea aj)p(_( )) 

It will be shown that, uniformly in r for the range 

1 < ? < \, 

the autocorrelation function is small; that is, quantitatively 

I VI(r)l < m-12[.81(2 + /2)v(mr) In2 m + 33(4 + 2V2)v(mr) ln m], 

provided (a, m) = 1 and m ? 36. The function v'(m) is the number of distinct 

prime divisors of m. Thus, the sequence ({- a2}) m-1 is approximately uncorrelated. 

Let Ha(x) be given by Ha(x) = a + p(x) - p(x - a), that is, in the initial 
period, 

H(x) = 1, I0 x < a, 

0, a x <1 

then the joint distribution function G(a, A) of the sequences x, x(T) is given by 

IN 
G(a, A) = lim-E H. (xj)Ho(xj+r). 

N->ooN j=_ 

For the sequence ({.J2})m-1, this takes the form 

G(a,~ 3)=lEH(a j2) H, (m (j + ') 
2 

It will be shown that, uniformly in r for the same range stated above, and under 
the same conditions on a, m, 

I G(a, A) - ao I < m-1/2[3.24(2 + V2)v(m)In 2 m + 392(4 + 2 V/2)vrn) Inm]. 

Thus, the sequences ({ I2})m1, ({- (j+ r)2 )o-1 are approximately independ- 

ently equidistributed over (0, 1). 
The above enumerated properties show the possible applicability of the se- 

quences (J? I2})om1 ({a (J + T)2})o0 as random numbers in Monte-Carlo pro- 

cedures. However, an important question is the behavior, from the viewpoint of 
random number characteristics, of consecutive portions of the complete sequences. 
This is being studied by the author, and an investigation of the question will 
appear in another paper. 

2. Analytical Discussion. The proofs of the main theorems require the establish- 
ment of several lemmas. 

LEMMA 1. t > 1 

p (x) z7 sin 2irhx . 
_ min 

1mhxt r-h +'2it llxfl/ 
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where 

1X1 <1 

and in which IxII denotes the distance from x to the nearest integer. It is understood 
that when x is an integer, the estimate 1 is used. 

Proof. The Fourier series for p (x) is 

(2.1) p(x) = sil 2i-hx 
h==1 rh 

hence, it is necessary to establish 

(2.2) z ~~~sill 2rhx<m ni \ (2.2) i E h < min (1I ii) 
h>t irh \2rtfIxflj 

The following standard theorem derived from Abel's transformation of series will 
be used: 

al, _O, 0 bp ? B 

(2.3) P=M 

m Z a,bi < aMB. 
I =M 

Also standard is the following estimate: 
1~~~~~~ 

(2.4) 5 , sin 27rpx < ___ 
p=M =21xfll 

Applying the inequalities of Equations (2.3) and (2.4), one has 

(2.5) <i2-h 
h>(t rh - 27r([t] + 1)11x11< 2rt flxIV 

If 2wrt 1f x 11 > 1, then Equation (2.2) has been established. Consider now the case 
2irt x fl < 1, then 

Zsin 2rhx , sin 27rhx - sin 27rhx 
h>t 7rh h=1 7rh I? h_t -rh 

Thus 

sill 2rhx 1 sin 2rhx I + sin 2rh lx 
V h> t 7rh 2 1 _ ht i-7rh 2 1 _ h _ t 7rh 

< + 2 1 x 11 t -+ < 1. 

Equation (2.2) is now established. The Fourier series for p(x) does not equal p(x) 
when x is an integer, however, with the understanding stated in the lemma, the 
lemma remains correct also in this case. 

LEMMA 2. z 
sin 

2irhx< 
3 

h 2 < t 7-rh 2 
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Proof. One has 

(2.8) z sin 2irhx , sin 2irhx sin 2irhx 
1_h_ t 7rh h=1 7rh h> t 7rh 

Hence 

sin 2irhx 1 sin 2irhx 3 
(2.9) Z< -+ Z7 K- 

1?<h?<t i-h -2 h>t r-h 2 

The inequality of Lemma 1 was used. 
LEMMA 3. t > 1 

> p(x)p(y) = z sin 27rhx sin 27rly 
1?<h?t l_l_t T hl 

+ 5 [min (1,2t ) + min (, 2r Y)] 
where 

Hi1 <1. 

Proof. Use of Lemma 1 yields 

p(x)p(y) z z sin 2rhx sin 2rly 
1lh_t 1l_lt - hl 

(2.10) ?+ sin 2ihs *min (1, 1 + sin 2ily 
1?h?t r-h '2i-t y 1?l?t r 

min(12 tI 1)+ 2min(1, 1)min ( l ) 

Lemma 2 allows one to write 

(z sin 2irhx sin 2irly p(X)p(Y) = E 2 
1_h_t 1_I_t hl 

(2.11) + 3 min (1, x . + niin (' 2irt y 

+ r/ ( 
' 2,t x 2) ( 2,,t y) 

Observing that 

(21)min(i1t Min(i,2j <) min(i 1 ) mi 
,2? 

t 
mx 

127rt 
(y )x ) 

_ min (1,2t 1I 1 + nmin (12 7t1 1 

the lemma follows. 
Let f(j), g(j) be given functions of the integral variable j. Define e(x) by 

(2.13) e(x) = ei2x, 
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R by 

(2.14) R = Z p(f(j))p(g(j)), 
a<j _ b 

Sh, iby 

(2.15) Sh,l = Z e(hf(j) + Ig(j)), 
a<j < b 

and Sf by 

(2.16) S=a<j S b (27rt ||f(j)f11) 

then 
LEMMA 4. t ? 1 

==>RI <1Z z7 7 Shi 1 1 Shi- 5 Sf+5 S 
271?h<t 1?<t hi 2- 1?<h<t 1l?<t hl 2 2 

Proof. Observing that 

(2.17) sin 2 7rhx sin 2 rly = cos 2r(hx - ly) - 2 cos 2ii-(hx + ly), 

one obtains from Lemma 3 

p(x)(y) = 2 Z cos 27r(hx-Ii) - 1 z z 
2 l<h<?tl<l<t hl 22 l<h<tl<l<t 

(2.18) cos2ir(hx + ly) 5Fmi. (i1. 
hi + 2 L\ 2 tfmin 1, l + min 1, 2rtl yfljj 

Replacing x by f(j), y by g(j), and summing with respect to j, Equation 2.18 yields 

1 1 
R 22 Z - Z cos2ir(hf(j) - Ig(j)) 

2 1<h<t 1l<<t hl a<j<b 

(2.19) - - - 

2w2 Z Z - Z cos 2r(hf(j) +ig(j)) +2 '(Sf + Sg). 2 1r 21h_tl_l_ht ha<j<b 2 

Thus 

R < 2 Z Z - Z cos 2(hf(j) -lg(j)) 2r 1<h<t 1l<<t hl a<j<b 

22I0w+ 2 Z : 
I Z COS 2w(hf(j) + 1g(j)) + 2Sf + 5 Sg 

2r 1_h_tl_l_t hl a<j<b 2 2 

Since 

I Z cos 2wr(hf(j) - lg(j)) ? Sh,- I 
a<j_b 

(21 Zcos 2wr(hf(j) + lg(j)) _ Sh,l 
a<jte ob 

the lemma follows. 
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For the sequence given by 

(2.22) xi a j2 (a, m) = 

it is necessary to estimate 

(2.23) R p p(a2 a r) 

in which a, 0 satisfy 0 < a < 1, 0 < 1 < Let 

(2.24) f(s) a 
i2 - a 

m 

(2.25) g(j) a (j + 

then, 
LEMMA 5. (a, m) = 1, 

X I Shl, I _ \/2m(h + l, m) 

Proof. One has 

(2.26) Sh,l = Z e r-hj +al(j+r)2) 

Let 

d = (h, 1, m), 

h' = h/d, 
(2.27) h' hl/d 

lI llId, 

m= m/d, 
then 

Sh,lm= 1e(ah j2 +al (j +)2) 

Sh.1 e -r Z (j7P a,i?)2 

=d e (m' + m' (i + )) 
Let 

(2.29) S'= , eI + a (+r)2) 

then 

(2.30) S = e a/ (h' + 
1')j2 +2al'-.) 

One has 

(2.31) S 2 = i e ( (h' + l k)(j2 1c2) + ka)T - 
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and 
m '-1 m'-l+k / 

(I 1232 IS'1 -= 
m 

e (-k (h' + t1)(j2 k2) + 2alr ( ) 
k=O j==k \m 

Let 

(2.33) j = k + v, 

in which v is a new summation variable, then 

(2.34) IS' I = 5E e (h + )vk) e (m' (h' + I>) + 2'v 
P=O k==O/ m m / 

and hence, 

(2.35) S 2< ; e (2a (h' + I') vk) 

Let 

(2.36) 8= (hI+ 1',m), b= h + i m" = m 

then 
MI-1 

2a 
mi-1 ~~~~~m' -1 

/cb 

(2.37) Zekie (h' +l') vk )=Z,e(\+ k)=8 e(j vkc) 
(') k=O (m' k= (" k==O (m" 

Thus one obtains 
rn'1M"-1 /2ab~ 

(2.38) SIS12? <_ e (2 vk) 

By direct summation, one has 

(2.39) ml e(2a k) =0 " j 2abp 

= mn", im" I 2abv. 
Since 

(2.40) (ab, m"') = 1, 

m" I 2abv at most 26 times and hence, 

(2.41) 1 
SI 12 < 282mn" = 26m'. 

Equations (2.28), (2.29), and (2.41) now yield 

(2.42) 1Sh, I < d /28m' = V28bdi'= -\/28dm -\/2m(h + 1, im). 

Lemma 5 yields a trivial estimate when applied to Sh,_h . It will be important 
to determine an accurate estimate for this quantity. 

LEMMA 6. I < r < 2t' 1 -< h t, m > 2t 
2t' = 

==* Sh,-h = 0. 
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Proof. One has 

/'fhah m.1l2ah\r 
(2.43) Sh, = h E e ( - (j +))) = 2ol ey i) 

Since (a, m) = 1, the sum in Equation 2.43 is zero when m + 2hT. One has, for 

1< T < 1 < h < t m > 2t, 
2t') 

(2.44) 2 < 2hr < 2tr < m. 

Thus, m + 2hr and consequently, Sh,-h = 0. 

LEMMA 7. t _ 1, m > 2t, 1 < r < - 
2t 

R I 2 Z 1M?i\V(h +1, m) 
N/2 < W 2 1h?t 1_lt hl ( 

_____ ~~ ~~~~~5 5 

V/T+ t1<th -\(h - 1, m) + -Sf + 5Sg 

Proof. The lemma follows immediately from Lemmas 4, 5, and 6. 
LEMMA 8. For t > 3, one has 

2 ZlZ l- 1 i,m) < Vi (7.10In t+5.261nt lnm)(2 + /)v(m) 

in which v(m) denotes the number of distinct prime divisors of m. 
Proof. In abbreviation, define S as follows. 

(2.45) 1?// 22 ?t ?l?St hi (h + 1, m). 

Let h, 1 be restricted so that (h + 1, m) -d, then 

(2.46) S= - --2E 5 - 
-\/27r dlm 1_h_t 1<I<t hlt 

(h+l,m)=d 

The set of integers h, 1 for which (h + 1, m) = d is included in the set for which 
d Ih + 1, hence 

(2.47) S < = dh l 

dlh+1 

All integers fall into d residue classes modulo d. If r denotes one of the integers, 
0, 1, 2, , d- 1, then when h belongs to the residue class represented by r, 1 
belongs to the class in which d - r is member. Let Sr denote the following sum 

(2.48) Sr = hi1 
1<h<t 1llit hl 
har(modd) 
1 ad-r(modd) 

and S'(d) denote 
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(2.49) S'(d) = Z E 1 
1_h? t 1_I t hl' 

d I h+I 

then 

s? -VmV E VdS(d) 
(2.50) d-I2 d|m 

S'(d) = Z Sr. 
r=O 

From the symmetry of the sum in Equation (2.48), it follows that 

(2.51) Sr = Sd-r 

and hence 

(2.52) S'(d) < So + 2 I Sr. 
1<r?d/2 

Setting h = cd and 1 = ed in which c > 1 e > 1 are new independent summation 
variables, one has 

(2.53 ) s0 = ~d (1 <tld 1) 2 (1 < t ) 

Since, for t > 3, 

(2.54) 1 <1+J =1+ nt <2 Int, 
1<c?t c X 

one obtains 

(2.55) S < 4 In2 

d~~~~~~~~ 

Forr satisfying 1 < r < - let h = cd + r andI = ed - r, then h > 1 implies c ? 0, 

1 _ I implies e > 1, and 

(2.56) Sr< 1 1 
t< r cd + r + tr ed -i r 

One has 

(2.57) 1 1 d__-___n-< 

0?_= < t-r cd + < + d + r r d rn- r d 
d 

Also, one has 

(2.58) Z 1 1 , 
t+r ed- r <e< ed + d- r d t+r e + 1 w e i r =< 2 was 0u<ee <--1 - d= = d 

in which the inequality r dwas used; further, 
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(2.59) 1 + < 2.7 + ndt < 3.7 Int. 
o? < ??r-1 e- l? +f +i2.+ t3. t 

d 

Thus, one has 

(2.60) z 1 < 3.7lnt 
i<e<Lt+r ed - r d 

Equations 2.56, 2.57, and 2.60 yield 

(2.61) Sr< 3.7nt+ 3.71n2t 

Equation 2.52 now takes the form 

(2.62) S'(d)<4 41n2t 3.71In2 t 7.4In t 1 
(2.62) S (d) < d2 + + z ' 

d d d 1?r? d 

Since 

4 In 2t 4 In 2t 
(2.63) d2 -d 

and 

d~~~~ (2.64) 1?1 < d1 d 

=2 

in which thcL inequalities In 2 > .69 and d < m were used, one obtains 

(2.65) S'(d) < 10 ln2 t +7.4 1n t ln m 
dd 

Thus, Equation (2.50) yields 

(2.66) S< NAM2 (10 In 2 t + 7.4 In t -In m) E - 

(2676 
dlm Vd 

Let O(a) be a multiplicative function of the integral variable a, and let 

(2.67) a = plal p2 2.pv 

be the canonical factorization of a, then the following identity holds [3]. 

(2.68) 5 0(d) = H 
[1 + 6(p) + 6(p2) + * + O(pa)] 

dta pla 

Employing Equation (2.68) with O(d) = 1/V/d, a = m, one obtains 

(2.69) Z = 111 [1 + + ++ ( 
dlmVd pIm LV ( / )(p2 

and hence 

(2.70) 1 n i _[p ( ) 
dlmV PIm LV ( 2p J imf 
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Since p > 2, one has \p (V\p - 1) ? 2 + V2, and hence, 

(2.71) < (2 + V2Y) v(m) 
dim -\Idu 

Equations 2.66 and 2.71 now yield 

(2.72) S < X,2 (10On2 t+ 7.4ln t ln m)(2 + V2)() 
\/2gr 

Finally, use of the inequality I //2 < .71 yields the result of the lemma. 
LEMMA 9. For t > 3, one has 

V/ 27r 1?< 1h<t 1?<1Z<t hl 

<: 2 (8.52 In t + 2.84 ln t ln m) (2 + /2)v) 
7r2 

Proof. In abbreviation, define S by 

(2.73) 1\h Z Z - (h-1, n). 

V2w~1?ht 1?1?1 hi1 
As in the proof of the preceding lemma, one may write 

(2.74) \/21r d m 1<h<t 1<1 t hl 
(h-I ,n)=d 

hSl 

Define S'(d) by 

(2.75) S'(d) = Z Z 
*2.75) 1<h<t 1<1<t hl 

- iIh-I 
- 

h5pQ 

then, since the class of integers satisfying (h- 1, m) = d is included in the class 
dI h - 1, one has 

(2.76) 
n V mZ d S'(d). 

N/72 dl. 

When h belongs to the residue class represented by r, then 1 belongs to the same 
residue class. Let Sr denote the following sum. 

Sr 1 
(2.77) 1?h_t 1<1_?t hl 

lhr(mnod d) 
l=ar (mod d) 

then 
d-1 

(2.78) S'(d) ZSr 
r=O 
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Setting h - cd, t = ed, the inequalities 1 ? h ? t, 1 <I t imply I _ c ? t/d, 
1 ? e < tld, and 

(2.79) so < 2( 12 < 4 In' t 
d l_<t/IdC d2 

For I < r < d, let h=cd + r, I-ed + r, then 1 < h < t, 1 <- < t imply 0 

c-< 
t r 

? _ e < 
t , and 

(2.80) 
Sr 

SdOe d(+) 
(2.80) Sr~~ <c t- 

= o ? 
<~ Oe <t-r (cd + r) (ed ? r)~ 

cFSe 

Due to the symmetry of the sum in Equation 2.80 

(2.81)Sr2 1_ _ 

O)< st-r cd + r 1 <e t-r ed + 
d ~~~~~d 

Equation 2.57 yields 

I <1 ln t 
(2.82) Z 1 <c+ + 

0?c t-r cd?+r r d 
dc 

further 

(2.83) Z< Z -<-(1+lIn t)< (1 t<e-r ed +r d 1<e<t e d d 
d 

and hence, 

(2.84) Sr < 4ln2 
d2 

Since I < d < m and 
d-1 

(2.85) -<l+ Inm, 
r=l r 

Equations 2.78 and 2.84 yield 

(2.86) S'(d) < 12In' t+ 4 ln t*lnm 
d d 

Fromii Equations 2.76 and 2.86, one now has 

(2.87) S < vm2 (12 ln2 t + 4 ln t-ln m) (7/2r dim V\d 

Equation 2.71 and the inequality 1/N/2- < .71 yield the result of the lemma. 
Let Ar(m) designate the number of solutions of the congruence 

.2 
(2.88) aj r(mod m) 
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then Lemma 10 provides an estimate for A,(m) which is needed in the estimation 
of the sums Sf, S, . 

LEMMA 10. (a, m) = 1 

==~ Ar(m) ? 2v(m)+l\V(r, m). 

Proof. Let A designate the number of solutions of the congruence 

(2.89) j2 (mod m), 

and let 

(2.90) m c 2 P101 ... P 

be the canonical factorization of m with 

(2.91) a _ 0, al > 0, 1 _ I _ ?k 

and the Pi odd primes. Then by the Chinese remainder theorem, 
k 

(2.92) A- THT, 
1=1 

in which T1 is the number of solutions of j2 _ a(mod pit), and T is the number of 
solutions of j2 _ a(mod 2a). Consider the congruence 

(2.93) j2 ca(modp). 

If po I then the congruence has one solution i.e.] = 0(mod pa). Accordingly, let 

(2.94) (a,) p) = p2y+1 0 < 8 1 

in which it is now supposed that 2'y + a < A. Divide Equation 2.93 by p2-', then 

(2.95) J2 9 (mod Pj-2^Y) 

in which 

(2.96) i = Pai ' = p2a . 

One mnust have 8 = 0; otherwise, let = 1 then a' = pq, p Jr q, 2y- 2y >2, and 

(2.97) ja =pq(mod p-2T). 

Sin p I pq, p I p-2y one has p 1 j/2; hence p21 j12. Also, since p21 p-2y it follows that 
p21 pq which is impossible. Thus 8 = 0 and (a', p) = 1. Let jo' be a solution of 
Equation 2.95 then 

(2.98) (jo' + p-2yt)2 CT/'(mod p-2T) 

where t is an arbitrary integer. Multiplying Equation 2.98 by p2 , one obtains 

(2.99) (jo + pl-,t)2 =- a(mod p3) 

in which 

(2.100) jo = paio, 

and 

(2.101) j2 =_ (mod p) 
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Since for all t satisfying 0 _ t < p', one obtains solutions of Equation 2.93, there 
are p' solutions of Equation 2.93 for each solution of Equation 2.95. Since (,', p) = 
1, the number of solutions of Equation 2.95 does not exceed 2 when p is odd, and 
does not exceed 4 when p 2 [3]. Thus 

T, ? 2p7, A l = , 
(2.102) T ? 4 2 3 

From Equation 2.94, one has 

(2.103) <r _ P 

thus, Equation 2.102 may be written 

(2.104) T, ? 2V(a, Pia"), 
T < 4(,2a). 

Let m be odd, then 

kk 
(2.105) A = T , < 2| (k p al) = 2v(m) ). 

If m is even, then 
k k _ _ 

(2.106) A = T I T, < 2 | (aa) 2 ( pl ) 2m)?/( n). 

Thus in all cases 

(2.107) A < 2v(m)+?i\/( a, m). 

Since (a, m) = 1, one has 

(2.108) (a, m) = (r, m) 

and hence the estimate of the lemma. 
LEMMA 1 1. (a, mi) = 1, 0 < a < 1, 0 < A < 1, m > 2w7rt 

Sf < 8(4 + 2V/r)v(m) + ilnin] 

Sg < 8 (4 + 2\/ ) v(m) [m + inlnin] 

Proof. Consider, in the sum 

(2.109) Sf = E min (l, 2 , 

regrouping the terms so that all j for which 
.2 (2.110) aj r(mod m), 0 r < m 

constitute a group indexed by r, then 
m-1 

(2.111) Sf = E Ar(m) minm 1 ) 
r~~O X 

~2w7t a- 
in 
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The estimate of Lemma 10 yields 
m-1 / 1 

(2.112) S < 2v(M)+1 rn-i(r, -rn)m (i 2n t 1 ) 

Let r be restricted so that (r, m) = d, then 

(2.113) Sf < 2v Z V d min 1, 
(r,mn)=d 2-wt - a c 

in 

The set of integers r satisfying (r, m) d is included in the set d r, hence 

(2.114) Sf ? 2vm)+ E .V/ Z min , 1 Sf 
~~~dim O?r<rn 

d m d I r 27rt - a 0 

Introducing the summation variable c by r = dc and setting d' = m/d, one has 

(2.115) Sf < 2v(m)+ Z d- min 1 
dim O < c<d' 27t ) 

Let 

(2.116) mi(i 2rt - 

Then the sum S will be estimated by consideration of four cases. 

Casel -1 <. -?<- 2 

One has 

(2.117) - - = 1+a -a 

(2.118) _1+ mmn(, i ( 2x ))dx 

< 1 + d i mi (1, 2wfu) du, 

mi 1+ d' ln / 
<1+rt I +- r 

(:ase~~ ~ ~~~~ 2. min l< dx-, 
2 d'~~~~~~~~~~~~~~~~d 
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One has 

C C 
(2.119) -- a a d" 

and 

(2.120)O<cd'a (i 2t ?c))- 1 + fd min (1, 2(t Q ) ~;d) dx, 

(2.120) < 1 + d min(1,2 j du, 

d' in 2 t d'~~d'd 

(2.121) d I d- min 
and 

dE<cd minl K1 2wt 1 +, f min( K ( 2)) dx, 

(2.122) ? 1 + d' fD'min (i,2 1 ) du, 

d' n 27t 
<1+ -7rt 

Case 4. < - -< l 

One has 

C C 

(2.124) ?1+ f (1d(X + ? 

E7, min I < I? + min 1 d d 

d 'a(ot<c<d ' c a d 

2-7rt~ at 27rt - - 

d' in irt 
<1+27rt 
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Thus combining the estimates obtained in the above four cases, one has 

d' in 2irt 
(2.125) S < 4 + 4 d 7rt 

and hence 

(2.126) Sf < 8.2v(m) d + mlnm] 

where use was made of the inequality m ? 27rt. Equation 2.68 permits the following 
transformation of the sum Edlm V/d 

(2.127) E -Vd = f iI + F -/-p + \p 2 + .. + . /p'] 
dlm pfm 

in which the product is over the prime divisors p of m. Since 

1+ V/ + -\/2 ++.. +V _ pa+i -1 

(2.128) - 
< /P vP < (2 + V/2) Vpa, 

xp- 1 

one obtains 

(2.129) Z Vd < (2 + V )v(-)-j. 
dim 

Thus 

(2.130) Sf < 8(4 + 2 V/2)v(m) G- + 8.2v(m) m In m 1 

Use of Equation 2.71 yields 

(2.131) Sf < 8(4 + 2)v (m) [m+ m lIn ] 

For the sum Sg, one has 
rn-i 1 _ _m -_ _ _ __1 _ 

(2.132) Sg mi mmMn 

i=? ( 27rt a (j + r)2 _=0 2rt a .2 

and hence, the estimate obtained for Sf above applies also to Sg . It is now possible 
to state the first main theorem. 

THEOREAM 1. (a, m) = 1, m > 36, 1 ? r < /vm, 0 _ a < 1, 0 ? 3 < 1, 

=P p (_ j2 _a p (_ (j + 7-2_t3 

< /-M[.81(2 + V2v(m) in2 m + 33(4 + 2,y/2)v(m) in I] 

Proof. Lemmas 7, 8, 9, and 11 yield 

R1 < 33 [15+62 ln t+ 8.10 In t +n m](2V [ + i2) 
(2.133) 7r 

~~~~~~+ 40 (4 + 2-\/2) v(m) -\/m + m ln m 
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Since 7r2> 9.85, one also has 

1R < V/[1.59 in2 t + .823 In t*In m](2 + V2)v(m) 

(2.134) + 40(4 + 2V2)v((m) [vl +m m]. 

Choose 

(2.135) t 2\Vm, 

then, since In t < - In m and r > 3.14, 

21 R 6< Vn[.81(2 + 2-)v(m) In2 m + 40(4 + 2V2)v(m) 
(2.136) 

+ 26(4 + 2V2)v(r) In nm]. 

One has 

40(4 + 2V2)\v(m) + 26(4 + 2V2)\v(m) In m 
(2.137) = (4 + 2V2)v(4) in m (4 + 26). 

Since m > 36, In m ? In 36 > 5.88, one has 

(2.138 ) (40 + 26 In m)(4 + 2V\2)v(r) < 33(4 + 2V 2)vm) in m, 

and hence 

(2.139) 1?R < Vin[.81(2 + -V/2-)v(m) In2 m + 33(4 + 2\/2-)v(m) In m]. 

The conditions t > 3, m > 27rt are both met by the condition m _ 36. Since m/2t = 

Vm, the condition 1 < r < m/2t becomes 1 ? r < x/'m. The theorem is now 
established. 

The autocorrelation function of the sequence xi = 2 is obtained immediately 

from Theorem 1 by setting ai = 0, = 0, and recalling that AP(r) = R/m. Hence, 
one has 

THEOREM 2. (a, m) = 1, i > 36, 1 _ r < V/mn 

I (r)I < m-2[.81(2 + \/2-)v(m) In2 i + 33(4 + 2V2)v(m) ln m]. 

Consider the simultaneous Diophantine inequalities 

(2.140) 0?{m 2}< < ?-{m (i+T)2}<, 0 _ j < m. 

Let the number of solutions of the inequalities be designated by T(ac, f), then 

(2.141) G(ac, T) - (a ,3) 
m 

is the joint distribution function of the sequences {i j2}, {a (j + _)2}. If the 

sequences{? j2}, {O (j + r)2} were independently equidistributed over (0, 1), 
m m 

one would have G(aC, a)=Oe. It is the present object to determine the devia- 
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tion of G(oa, 3) from the desired joint distribution aO. For this purpose, let 

(2.142) Ha (x) = + p(x) - p(x - a), 

then H,(x) is a periodic function with Period 1 and, within the initial period, 

(2.143) 
Ha(x) = 1, 0 < x < -a, 

(2.143) 
= 0, a < x <1. 

In view of the above properties of Ha(x), the enumeration T(ac, 3) is given by 

(2.144) T(a, 3) HI(a j2)H (a(j+ )2) 

LEMMA 12. 

T(ai, 3) a c43m + pZp(fai2) - - 

m-1 \ m-1 

+ QE (a + 7)2) - a p a 
(j+T2_ ) 

J=o \Xlt j=o gn/ 

+m (a j2) (a (j + a)2) _m (aj2 - ) p (a 2 + )2) 

3=0 xn x j=o m in 
a 2) (a (j +r)2 - /3) +mt (2aJ2 - )(a ( + r)2 2 3) 

Proof. Use of Equations 2.142 and 2.144. 
LEMMA 13. (a, m) = 1, m > 36, 1 ? r < -Vmn, 0 < a < 1, 0 </ < 1, 

I m-1(a 

> | Tot, ) -oim |< 2 E 
a 

(mi2 T(a, ) - a/m p < 2 
rn-i m- ( 

+ EP j-a + _ 

+ V/W[3.24(2 + V2)v(m) 112 m + 132(4 + 2V\/2)v(m) ln m]. 

Proof. Theorem 1 enables the estimation of the sums of products of the p-func- 
tions to be effected. Also observing that 

(2.145 ) m 1 ( a 
12) 

E a ( j + 'r) 2) 

;=o in j=o m 

and 
m-1 / m-1/\ 

(2.146) p j2 _/3) = 
a (j + r)2 - /3) 

the lemma follows. 
In order to estimate the sum of the p-functions in Lemma 13, the following 

lemmas are required. 
LEMMA 14. (a, m) = 1, 0 _ a < 1, 

e - J2 - ha < V/2m(h, m). e= 
ha 
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Proof. Let 

(h, m) = d 

h h 
(2.147) d 

m 
m= r 

d' 

and 
rn-1 

(2.148) S =Ze ha)h 

then 

(2.149) SI = e e( ) d T' (e 4 ) 

One has 

I S 12 d2 e a 
j2 h a k 

k=O j=O in/ M / 
(2.150) rm'-1 m'-l+k /h 72 

=d2 e a a 2 
k=O j=k m 

Introduce a new summation variable v by 

(2.151) j = k + v, 

then 

I S 12 d2 mE E 2h a 1c h a v2) <2 E 2h avk (2.152) d e ~~~vk e rn<'-ei v 
P=O k=O (2h'ak)k= 

By direct summation, one obtains 

(2.153) ke= 
(2hta k) 0 m' 2h'av, 

- i', m' j 2h' av. 

Since (h a, mi) = 1, m ' I 2h'av if and only if m' I 2v which may occur at most 
twice. Hence, 

(2.154) I S 12 < 2d2M' = 2md. 

The lemma follows on taking the square root. 
LEMMA 15. (a, m) = 1, m > 36, 0 < a < 1, 

=> ( a j2_) < ls-< h oV(h, in) + 64.7 \/rn(4 + 2V\/2) vm lnm. 

Proof. Use of Lemma 1 yields 
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j= - m |1 <ht Arh |7 -o V 

(2.155) rn- / 
+ Zmin 1, j C 

i=O k~2-7rt a a2 

Setting t = 2 \rn and using Lemma 11, one obtains 
rn-i 1 rn-i (ha.2\ 
Z1 ifa) <Z --7 e-j 

(2.156) =2m-)/ -7-h = \m / 

+8(4 + 22d)vm)\/m [1 + In m]. 

Since m _ 36, one has In m > 5.88, hence 

(a.211 r-i 

1-03-al <hZ 'V-- Zeo (2.157) =21?j< 1rh j=O (m i) 

+64.7V/n (4 + 2V-\r) )ln m 

The lemma now follows on employing Lemma 14. 
LEMMA 16. (a, m) = 1, m > 36, 0 < a < 1, 

(aj2 - a) < 64.9V\rn(4 + 2VW)v(m) ln m. 

Proof. One has 

A/2m Z - h /2m ZV -Vd -i 1_h<!V _ h T dlm 1ih? vm-h 

(2.158) (h,m)d 

N<-2ZVd Z1 < m A/d 1 
7r dlm 1_h<1v-1; h' 

Let h = cd, then, 

m<_ E , < V/2m Z1 z 

-r dlm 1<h< ?-V;W h ir d 5ICm -\Ild _ m C 

(2.159) dlh 

</Vn(.15 +.271nm) 1 
dlm -Vd 

Use of Equation 2.71 now yields 

(2.160) Z -VI(h,m) < \rn(.15 +.271nm)(2 + \)(m). ir 1ih<lVw h 

Since m > 36, one has 

(2.161) .15 + .27 ln m < .296 ln m, 

and hence 
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(2.162) V2m V(h, m) < .296V/n(2 + V\/2) v(v) In m, 
7r 1<h<_ /\Im h 

Lemma 15 now yields 

(213 ( - j2 a) < .296V\n(2 + 2V) v(m)lnm 

+ 64.7\/n(4 + 2V2)v(r) In m. 

Since 

(2.164) .296(2 + \/2)v(m) + 64.7(4 + 2V-)v(m) < 64.9(4 + 2V/2)v(?n) 

The lemma follows. 
THEOREM 3. (a, m) = 1, m > 36, 1 ?< r < Vn, 

G(a, f) - ao I < m-2[3.24(2 + V/2-)v'm) 1n2 m + 392(4 + 2V/2-)v(m) ln m]. 

Proof. Use of Lemmas 13 and 16. 

Theorem 3 thus demonstrates that the sequences{ - - {m (j + r) }are approxi- 
in Mf 

mately independently equidistributed over (0, 1). 
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