
306 T. E. HULL AND R. L. JOHNSTON 

tions showed: If t < .001 and I Axk I < .02, then I Xk+1 -x* < .000 35 and, as 
Xk+1 - x* and x* - x I depend on t and assume their maxima at different 

points, I Xk+1 - x < .0004 (even <.000 37). Thus, the iteration may be ended 
as soon as I AXk I < .02, if an accuracy of .0004 is sufficient. In the same way, if 
t < .001 and I AXk I < .0035, then I Xk+1 - x | < .000 52, | Xk+1 - x I < .0001. 
As initial values, x0, of the iteration process are recommended in the first case 
(EM < .0004) 4p(.000 962) - .020 = -3.122 and in the second case (EM < .0001) 

4I(.000 362 4) - .0035 = -3.3835 in order to cover the greatest possible t-interval 
with a single iteration. In the first case, 3 iterations are needed for t = 0.0001 
and 4 for t = 0.000 01. 

A program to compute V(t) was written for the Siemens 2002 computer, using 
linear approximations, rational functions Ri(t) and the iteration process, EM = 

0.0004. One iteration needed about the time of 40 multiplications. However, in 
most values of t, the iteration process is not involved, and the average computation 
time was approximately that of four and a half multiplications. This program was 
part of a multidimensional integration problem [1], where more than 900 000 
normal deviates were computed. 
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Optimum Runge-Kutta Methods 

By T. E. Hull and R. L. Johnston 

Abstract. The optimum Runge-Kutta method of a particular order is the one 
whose truncationi error is a minimum. Various measures of the size of the truncation 
error are considered. The optimum method is practically independent of the measure 
being used. Moreover, among methods of the same order which one might consider 
using the difference in size of the estimated error is not more than a factor of 2 or 
3. These results are confirmed in practice insofar as the choice of optimum method 
is concerned, but they underestimate the variation in error between different 
methods. 

1. Introduction. For the solution of 

(1) y = f(x, y), y(x0) = yo 

the general Runge-Kutta method of order m uses the formula 

(2) Yn+1 = Yn + wiki 
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to obtain yr, which is an approximation to y (xr). The w's are constants and 

i= hf (xn + aih, yn + E 3ijkj) j=1 

with h = x,q1- xn and al = 0. 
The w's, a's and O3's are constrained by requiring the true solution of (1) to 

satisfy (2) except for a truncation error which is 0(h') as h -* 0 for as large a 
power of p as possible. 

Typically this still leaves one or two parameters to be determined. Originally 
these parameters seem to have been chosen only for the sake of simplicity in hand 
computation. They have also been chosen in such a way that round off error and 
storage requirements are minimized [1]. On modern computers it is more important 
to choose these parameters so that the truncation error is a minimum. The corre- 
sponding methods will be called optimum, but of course what is optimum will 
depend on what is used as a measure of the size of the truncation error. 

2. Criteria for Optimum. Complete solutions of the constraining equations are 
known for the cases m = 2, 3, 4. For example they are given by Ralston [5] whose 
notation will be followed here and whose results will be compared with ours. 

For purposes of illustration we will consider the two parameter family of fourth 
order methods. The truncation error in this case turns out to be T = bh5 + 0(h6) 
where 

b = -44 0[blD4f + b2DfD2fx + b3fxD3f + b4DfxD2f + b5f 2D2f + b6fxx(Df)2 

+ b7fxDfDfx + b8fx3Df], 

with 

a= a 
D - -a+fa ,ax 'ay' 

and 

bi 5u + 5v - lOuv - 3, 

b2= 6(5v - 3), 

b3 = 4(3 + lOuv - 5u - 5v), 

b4 = 6(5u - 2), 

b5 = 6(2 - 5u), 

f - [ ~v (v - u) (1 - u)(3 - 4v)2 

b6 = 3{12- L(1 -v)(1 - 2u) + (1 - v)(6uv - 4u - 4v + 3)j}' 

b7= 12(2- 5v), 

b8 12. 
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These expressions cannot be used when u = 2 or v = 1, or when 6uv + 3 = 4u + 4v. 
Moreover the corresponding expressions for the a's, O's, and w's (which are needed 
in (2)) cannot be used when u = 0, 1 or v = 0, 1 or when u = v. However there are 
three one parameter families of methods which correspond to u = v = 2, u = 1 
and v = L and u = v v = 1 respectively. Further details of these special cases 
are given by Ralston [5]. 

The expressions given above can be obtained from (5.1) and (5.6) of Ralston's 
paper by making use of results given by Romanelli [6, p. 114]. To avoid some sub- 
scripts we have put Ralston's a2 -= u and a3 = V. 

The function f( x, y) is evaluated at points where x = Xn , Xn + uh, xn + vh, 
and Xn + h. Thus we would expect 0 < u, v < 1. In fact we would expect the best 
values of u and v to be not close to 0 or 1, and probably with u < v. 

Of course it is impossible to choose u and v to minimize T without regard to 
the function f. But for a general purpose method it is natural to consider choosing 
u and v so as to minimize some measure of T which is independent of f. For example, 
it is natural to try to minimize E I bi I or 5E (bi)2. Ralston minimized 

B = 161 b1 +41b2I + b2+ 3b3I + 2b2+ 3b31 + Ib2+ b3 + Ib3l + 8b4I 

+ Ib5l + I2b5 + b7I + b5 + b6 + b7I + b6I + 2b6 + b7I + b7f + 21b8 . 

This expression is obtained when the bounds given by Lotkin [4] are applied to b 
after the terms in b have been grouped in a certain way. 

The terms in the expression for b can also be grouped differently. Moreover, 
other measures of the size of b could be used. But we decided to consider only the 
above three criteria and to find out if they led to significantly different optimum 
formulas. The sensitivity of each measure to changes in u and v is also of interest. 
Finally, our main objective is to compare the dependence of each measure on u and 
v with the way in which the errors produced in practice by the corresponding 
methods depend on u and v. It is to be hoped that one or more of these measures 
will reflect at least the average behaviour of the corresponding methods. 

One special point should be noted. For certain values of u and v the value of 
b6 is much larger than all the other bi's. But the term involving b6 does not appear in 
T for the special case of linear differential equations because then f, = 0. A measure 
containing b6 or b62 would therefore be most inappropriate for linear differential 
equations, at least if any values of u and v which make b6 large turn out to provide 
accurate methods for such equations. We decided to consider separately the same 
three measures, but with b6 replaced by zero. 

3. Computations. Programs were written to evaluate the various measures of 
size of truncation error for all pairs of values of u and v from the set .05, .15, * * , .95, 
except that pairs with u = ?v were omitted. The resulting 90 pairs avoided all the 
singularities in the above expressions for the b's, as well as in the expressions for 
the parameters defining (2). 

Programs were also written to solve known differential equations and to find 
the error associated with the method determined by each of these pairs of values 
of u and v. 
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The following problems were used: 

y = -y + sin 2x, xO = 0, yo = -0.4, (here af <0) 

y' = y + sin 2x, x0= 0, yo =-0.4, (here > 0) 7 

y = y + cos x, x0 = 0, yo = l.0, (here laa oscillates), 

y' = y -2x/y, xo = 0, yo = 1.0, (non-linear). 

In each case we took h = .1, and printed out the error of largest magnitude which 
was observed in the interval 0 < x < 5. 

4. Results and Conclusions. The results for all six measures of size of the trun- 
cation error were the same in two essential respects. Their smallest values all 
occurred with the same pair u = .35, v = .45. However their values were not very 
sensitive to changes in u and v; in each case, for all pairs in .3 < u < v < .7 they 
were not more than about twice the smallest value. The only significant difference 
between the various measures was that those involving b6 were extremely large 
near where 6uv + 3 = 4u + 4v, as would be expected. 

The obvious conclusion is that all criteria lead to approximately the same op- 
timum formula, namely one corresponding to values of u and v near to .35 and 
.45 respectively. (This result is consistent with the result u = .4, v = .45573725, 
which Ralston gives for the exact position of the optimum according to his criterion.) 

What is equally significant is the conclusion that none of the criteria are par- 
ticularly sensitive to the choice of parameter values, as long as these values are 
near to the optimum ones. 

The results for the differential equations were less consistent. Nevertheless, 
in each case their errors had minima for methods corresponding to values of u and v 
which were within .1 of u = .35, v = .45. However, the errors were quite a bit 
more sensitive to changes in u and v than were the measures of size. For some of 
the pairs in .3 < u < v < .7 they were as much as 25 times the smallest value. 

One exceptional result occurred with the first equation. The errors in this case 
had a second minimum for u = .45, v = .15, which was slightly smaller than the 
other minimum. 

Our conclusion is that the optimum formulas suggested by the earlier criteria 
would in general be best in practice. However, the measures of size given by these 
criteria underestimate how much the errors depend on u and v. 

Of course these criteria did not take account of the possibility that different 
terms in the truncation error might be of opposite sign and thus tend to cancel 
each other. With all terms being considered positive it is not surprising that the 
minima given by the criteria were flatter than those appearing in practice. We 
observed that the errors in practice were of opposite sign on opposite sides of the 
minima, either for the same value of u and different values of v, or vice versa. 

Ralston also considered the one parameter families of fourth order methods. 
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He founid that the associated optimum formulas had error bounds which were 
larger by a factor of 1 or 2 than the optimum for the two parameter family we 
have been considering. 

Our computed results indicate further that the minima in these cases are again 
consistent, and relatively insensitive to changes in the parameter. In practice the 
different differential equations had errors which corresponded to these results about 
as they did in the two parameter case. 

Analogous results were obtained by Johnston [2] for the second and third order 
methods. A few special cases had been considered earlier by Kuntzmann [3]. 
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Helpful Formulas for Integrating Polynomials in 
Three Dimensions 

By Gilbert C. Best 

In this note formulas are given for integrating the expression xaybzc along a line 
between points Pi, P2, or over the surface of a plane triangle with corners at 
points Pi, P2, P3, or over the volume of a tetrahedron with corners at points 
Pl, P2, FP3 P4 , where Pi = (xi, yi, zi). Since these geometric figures are of 
dimensions d = 1, 2, 3 respectively, the writing of these formulas can be facilitated 
by defining "generalized volume" V to be successively the length of the line, the 
area of the triangle or the volume of the tetrahedron in question. Then the three 
formulas mentioned caii be given by the single equation 

ay dV=V a! b!c! d! d+1 (pi + qi + ri)! qPiyri~ 
(1) iv 

x y z dV = V 
(a + b + c + d)! i=1 pi !qi !r! 

d = 1, 2, 3, 
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