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[3]) for the exponents « — 4 and — 3 and for N abscissas evaluates this last integral
exactly whenever the degree of P is <2N — 1, and that is the best that can be
done. Thus our abscissas and coefficients are given by (since all the y;‘® are less
than 1):

(3) Bo(a) - O; Bi(a) — %Ci(a), xi(a) — (1 _ yi(a))I/Z(yi(a))—I/Z, i g 1

where the 0, and y;® are the coefficients and abscissas of the Jacobi-Gaussformula.
Since the set of all functions of the form

a1 + bz Gsv—1 + bay—1 x:l
1+ 2?) (1 F z2)2v1

is also that of all functions of the form (1 + 2°) " ~**'Q(x) where Q is a polynomial
of degree 4N — 2 or lower, the conditions determining the above formula for any
a and N are the same as those determining Harper’s formula for (using ‘% and
“n” in the meaning given them in [1]) k¥ = « + 2N — 2, n = 2N. Thus we have
just re-derived Harper’s formulas for even n.

It follows from known properties of Jacobi-Gauss quadrature that the coefficients
are non-negative; and if f is continuous and « is chosen large enough to make g
bounded, it follows that the approximation obtained converges to the integral as N
increases.

<1+x2)‘“[ao+ + -+
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Generalized Trigonometric Functions

By F. D. Burgoyne
In an investigation into geometrical properties of the curves z"/a” + y"/b" = 1,

use was made of the functions s,(u) where

sp(u)
u = f (1 — MY gy 0<u<P,)
0

P, = fol (1 — ) g = 2{(%) '}2/(?3)'

These functions may be called generalized trigonometric functions in view of
the fact that so(u) = sin w. Further, s;(u) is the Dixon function smu, considered
by Dixon [1], Adams [2], and Laurent [3]. For n = 4 and 6 the functions are re-
lated to the Jacobian elliptic functions sn(w) with moduli 2"%/2, (2 — 3'*)?/2

Received April 22, 1963, revised May 28, 1963.

and




GENERALIZED TRIGONOMETRIC FUNCTIONS

315

TaBLE 1
n P,
3 1.76664
4 1.85407
5 1.90030
6 1.92762
TaBLE 2
Values of generalized trigonometric functions
u s3(u) 62 sa(u) 82 s5(u) 82 se(u) 82
0.00 | 0.00000 0 | 0.00000 0 | 0.00000 0 | 0.00000 0
0.05 | 0.05000 | —2 | 0.05000 0 | 0.05000 0 | 0.05000 0
0.10 | 0.09998 4 10.10000 | —1 | 0.10000 0 | 0.10000 0
0.15 | 0.14992 13 | 0.14999 3 10.15000 | —1 | 0.15000 0
0.20 | 0.19973 19 | 0.19995 6 | 0.19999 1 10.20000 | —1
0.25 | 0.24935 31 10.24985 11 | 0.24997 5 10.24999 1
0.30 | 0.29866 45 | 0.29964 21 | 0.29990 7 | 0.29997 3
0.35 | 0.34752 60 | 0.34922 33 | 0.34976 16 | 0.34992 6
0.40 | 0.39578 76 | 0.39847 46 | 0.39946 26 | 0.39981 | 14
0.45 | 0.44328 95 | 0.44726 66 | 0.44890 40 | 0.44956 | 24
0.50 | 0.48983 | 116 | 0.49539 89 | 0.49794 61 | 0.49907 | 38
0.55 | 0.53522 | 135 | 0.54263 | 115 | 0.54637 88 | 0.54820 | 61
0.60 | 0.57926 | 157 | 0.58872 | 143 | 0.59392 | 118 | 0.59672 | 93
0.65 | 0.62173 | 175 | 0.63338 | 176 | 0.64029 | 158 | 0.64431 | 133
0.70 | 0.66245 | 197 | 0.67628 | 205 | 0.68508 | 199 | 0.69057 | 182
0.75 10.70120 | 212 | 0.71713 | 237 | 0.72788 | 246 | 0.73501 | 240
0.80 | 0.73783 | 230 | 0.75561 | 266 | 0.76822 | 288 | 0.77705 | 300
0.85 | 0.77216 | 242 | 0.79143 | 289 | 0.80568 | 327 | 0.81609 | 357
0.90 | 0.80407 | 253 | 0.82436 | 307 | 0.83987 | 360 | 0.85156 | 405
0.95 | 0.83345 | 260 | 0.85422 | 320 | 0.87046 | 377 | 0.88298 | 435
1.00 | 0.86023 | 264 | 0.88088 | 322 | 0.89728 | 383 | 0.91005 | 445
1.05 | 0.88437 | 264 | 0.90432 | 319 | 0.92027 | 374 | 0.93267 | 429
1.10 | 0.90587 | 260 | 0.92457 | 307 | 0.93952 | 353 | 0.95100 | 395
1.15 | 0.92477 | 254 | 0.94175 | 289 | 0.95524 | 321 | 0.96538 | 346
1.20 | 0.94113 | 243 | 0.95604 | 266 | 0.96775 | 283 | 0.97630 | 291
1.25 | 0.95506 | 230 | 0.96767 | 238 | 0.97743 | 239 | 0.98431 | 233
1.30 | 0.96669 | 214 | 0.97692 | 208 | 0.98472 | 197 | 0.98999 | 179
1.35 | 0.97618 | 196 | 0.98409 | 179 | 0.99004 | 158 | 0.99388 | 134
1.40 | 0.98371 | 177 | 0.98947 | 148 | 0.99378 | 120 | 0.99643 | 95
1.45 | 0.98947 | 153 | 0.99337 | 119 | 0.99632 91 | 0.99803 | 65
1.50 | 0.99370 | 131 | 0.99608 92 | 0.99795 63 | 0.99898 | 41
1.55 | 0.99662 | 108 | 0.99787 70 | 0.99895 44 | 0.99952 | 27
1.60 | 0.99846 83 | 0.99896 48 | 0.99951 27 | 0.99979 | 14
1.65 | 0.99947 58 | 0.99957 32 | 0.99980 15 | 0.99992 7
1.70 | 0.99990 33 | 0.99986 18 | 0.99994 10 | 0.99998 | —5
1.75 | 1.00000 | —9 | 0.99997 8 | 0.99998 2 1 0.99999 0
1.80 1.00000 | —3 | 1.00000 | —2 | 1.00000 | —1
1.85 1.00000 0 | 1.00000 0 | 1.00000 0
1.90 1.00000 0 | 1.00000 0
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respectively. (See Byrd and Friedman [4] p. 158.) General properties of these func-
tions are discussed in some detail by Shelupsky [5].

Tabulations of s3(u) are given in [2] to four decimal places for v = 0(P5/120)P;
and in [3] to ten decimal places for v = 0(0.001)0.103, but no direct tabulation of
so(u) for n = 4 is known to the author. For this reason it was decided to tabulate
so(u) for n = 4, 5, 6, and it was considered convenient to tabulate s;(u) also.

In Table 2 s,(u) is given to five decimal places for n = 3,4, 5, 6 and u =
O(0.0S)Pn*, where P,* < P, < P,* + 0.05. Second differences are given along-
side the tabular values, thus permitting interpolation at non-tabular points by
means of Everett’s interpolation formula

fo= (1 — p)fo+ pfr + Ex + Fa

where

Ey,= —p(p—1)(p—2)/6

and

F; = (p+ Lp(p — 1)/6.

TFourth differences are everywhere sufficiently small to ensure that the error due to
to interpolation will be less than 0.54 units in the fifth decimal place. The tabula-
tion was performed on a Mercury computer, a fourth-order Runge-Kutta process
being applied to the differential equation

Sn,(“) = {1l — snn(u)}l—l/n

starting from s,(0) = 0. In Table 1 we tabulate P, for n = 3, 4, 5, 6. The
functions

eau) = {1 — 8" (w)}"™
may be evaluated from these tables by means of the relation
co(u) = 8 (Prn — u).
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