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1. Introduction. This paper originated in an attempt to generalize a result of 
Goodwin's [1]. Goodwin showed that integrals of the type 

f e2 f(x) dx, 

where f(x) is even, can be evaluated with surprising accuracy by means of the 
trapezoidal-sum formula. It is natural to anticipate that a more general result can 
be obtained when the integrand is not restricted to the form given above; the gen- 
eralization was easily obtained by contour integration. The guiding idea which we 
employ in obtaining error-bounds is extremely simple: we express the error-term of 
an approximate integration by a contour integral and then choose a contour (among 
those which enclose the singularities of the integrand) on which the error-term is 
simply and easily bounded. Most often, it turns out that minimizing the absolute 
value of the error-term integrand is quite effective; and, in general, we have pre- 
ferred methods for obtaining error-bounds which can be used and extended without 
undue expenditure of time by the staff of a computing laboratory. Subsequently, it 
was found that the technique of minimizing the integrand had been used earlier 
by Davis [2] in a paper whose contents somewhat overlap the contents of the present 
paper. Further trial showed that the guiding idea could be used to obtain useful 
error-bounds for Gauss-type formulae. These bounds are reported in Section 3. In 
the main, the paper is concerned with the Euler-Maclaurin formula and extensions 
of it. 

Examination of the literature showed that numerical techniques for evaluation 
of infinite integrals by means of equi-spaced ordinates of the integrand are closely 
related to a body of classical work on the Euler-Maclaurin formula. Abundant 
references will be found in the Enzyklopadie der Mathematischen Wissenschaften 
(Band I A 3 ?38, p. 102-105, E ?11 p. 929-931, Band II A 12 ?105, p. 1324-1337, C 2 
?9, p. 91-96, C 7, ?10, p. 711-716) and useful summaries are given in Lindel6f [3] 
and in Hardy [4]. A summary of current methods for the evaluation of integrals 
may be found in the second edition of Modern Computing Methods [5]. 

The Euler-Maclaurin formula is commonly derived from real-variable theory, 
and it is fairly generally accepted that, in this form, the formula is of limited use in 
numerical integration. Our experience in the present investigation is that contour 
integration-where it is applicable-provides an easier route to the comprehension 
and efficient use of the formula. The conditions for the validity of the contour in- 
tegral and for the bound of the error bear on the behaviour of the integrand in the 
complex plane; in real-variable theory, the conditions bear on the derivatives of the 
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integrand. A bound on the value of a complex integrand is often more easily ob- 
tained than a bound on a derivative of moderate or high order of a real integrand. 

It may be useful to state at once the main results which are obtained here for 
evaluation of integrals by equi-spaced ordinates. The contour integral method ex- 
presses an integral as a sum of three terms: a summation ( in general, trapezoidal or 
mid-ordinate), a correction term, and an error term. Assuming for the moment that 
the error term can be suitably bounded, the following points are easily demonstrated. 

(i) The error term vanishes for a limited class of integrands. A similar point had 
been noted earlier by Fettis [61; but it is perhaps more important to note that real- 
variable analysis and complex-variable analysis of the Euler-Maclaurin formula 
are not completely equivalent save for this limited class of integrands. 

(ii) The correction term is zero if the integrand is even; the accuracy of the 
trapezoidal sum is then bounded only by the magnitude of the error term. 

(iii) When the integrand is not even, it is possible to evaluate the integral by 
forming a sequence of sums using decreasing tabular intervals h1, h2, . . , hm X the 
successive summations extending over smaller effective ranges. The accuracy ob- 
tainable is of course bounded by the sum of the successive error terms; if the suc- 
cessive error terms can be made to vanish, the accuracy is comparable with the 
accuracy of a single summation using the smallest interval hm but is much more 
economical of ordinates. 

(iv) The device described in (iii) may be used when the integrand has a simple 
type of singularity at the origin, e.g. xa (a > - ) or log x. In general, however, it is 
preferable to eliminate the singularity by a change of variable when the change can 
conveniently be made. 

2. Evaluation of Complete Semi-infinite Integrals. We shall be concerned almost 
exclusively with complete semi-infinite integrals, i.e. integrals over the range (0, cc ). 
The analysis for incomplete integrals, i.e. over the range (xO, C* )-supposing a 
change of variable to be inexpedient-or for finite integrals, is similar, but somewhat 
more complicated since it requires parameters specifying the ends of the range. 

2.1. Rectangular Contour Integral. The classical rectangular-contour analysis 
provides a generalization which includes Goodwin's result. Lindel6f (1905) states 
that the application of this contour in the summation of series is due in essence to 
Cauchy [7] though the connection with the Euler-M\aclaurin expansion was known 
to Plana [8] and to Abel [9]. It will be necessary to state the classical analysis briefly 
in order to emphasize our departure from the classical interest in summation. To 
anticipate a little we may characterize the departure by saying that quite weak 
conditions are tolerable if we are aiming only at a limited accuracy of evaluation. 

In order to obtain an approximation to the integral 

f g(x) dx 

we integrate the function 

rg (z) cot ir(z/h - X) 

round the rectangular contour L bounded by the lines y = id, x = +R, and allow 
R to approach infinity by finite steps which avoid the poles of the function on the 
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real axis. The parameters are defined thus: X is a real parameter in the range 
O < X < 1, h is to be the tabular interval of the summation approximation and d is 
the half-height of the rectangle; d is at present unrestricted though we may be 
obliged later to limit its magnitude. 

We suppose that g(z) is analytic and single-valued within the contour and that 
the integral 

(1) I = g(x) dx 

exists (it is not difficult to extend the analysis to an integrand which is meromorphic 
within the contour). We shall also require that 

d 

(2) lim j_ e27ry/hg(R + iy) dy = O 
R-Oo o 

but, when d is finite, (2) can be replaced by the simpler, and stronger, condition 

(2a) g(R ? iy) -o 0 

uniformly with respect to y, R oo, when -d ? y ? d. 
We have from the theory of residues 

(3) 2-w IL rg (z) cot ir(z/h - X) dz 

= h[Eg(Xh) + g(h + Xh) + g(2h + Xh) + **] 

where 

{1, X >0, 

2 X-0, 

and the sum (3) embraces the residues at the poles of cot wr(z/h - X) within L. 
The integral on the left-hand side of (3) can be simplified by a well-known 

device. We may write 

-cotir 2 _ 1 e2ri(z/h-X) 

2i h 2 1-e2ri(zh_X) 

on the upper half of the contour; and 

1 zZ \ 1 ~~~~~e-2ri(z/h-X) 
-cot ir - + 1j2ri(zhX) 

on the lower half of the contour (this device ensures that the second term on the 
right of these expressions is O(exp( -2r y I/h)). Since g(z) is assumed to be 
analytic in the closed domain, it is easy to show that 

(4)* f g(x) dx - T(X, h) E(X, h, d) + C(X, h, d) 

where T(X, h) = h[e g(Xh) + g(h + Xh) + * * * I and the integral is thus expressed 

* See e.g. Lindelof [3, p. 55-56], Hardy [4, p. 339-341]. 
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as a sum of three terms. Here, E is defined in (3), and E, C, are defined by 

E(X, h, d) = e~-21rdIh [1 g(x + id) exp 2i(x/h-x) ? 
' - exp 2-r[-d/h + i(x/h - X)] j 

... denoting a conjugate term; 

(5) h, d) =- fd [s(gy)- cos 2irX - exp - (2iry/h) 
2 cosh 2-ry/h - cos 2-rX 

sin 2irX rd 9(iy) + 9(-iy) 
2 JO cosh 27ry/h - cos 2irXdy 

The first term on the right of (4) can be regarded as an error term, provided that 
it is possible by a judicious choice of h and d to arrange that the damping factor 
exp (- 2ir d/h) is sufficiently powerful to make E negligible for a prescribed preci- 
sion of evaluation. The second term, C, may be termed a correction term: it corrects 
the trapezoidal sum and must in general be evaluated numerically. The correction 
term assumes a simpler and more familiar form if we take X 0, 2. We have then 

(i VW g(iy) - 
9( -iy) d y CV() = 

d 
9( y 6= 

exp (2ry/h)-1 
y 2 tlexp (2iry/h) + 1 

If the numerators in these integrals are expressed as Taylor series, we obtain ex- 
pansions which are analogous to the Euler-Maclaurin expansion and become 
formally identical with it when d approaches infinity.* More generally, we can write 
C(X, h, d) as a Taylor expansion and obtain 

(7) 
go 

g(x) dx - T(X, h) Bn '(IX) hng9(n1) (O) + Rm + E(X, h, d) 

where Rm is the truncation error incurred in replacing the correction term by the 
finite summation on the right of (7) and the coefficients Bn' (X) are defined by 

dlh 

B' (X) ( )n+l4n 
2n-1 cos 2rX - exp (-27ry) d n 1 2, 

y 2 [cosh 2-ry - cos 2irX] 

( )fll(4~ O~ dlh sin 2irX d =O12** 
L)2n+1XIX) (-mfi n + 2) y:82f2 [cosh 27ry - cos 27rX] 

The limit of Bn' (X), as d -oo, is the Bernoulli polynomial Bn(X) and the limit of 
Bn'(O) is the Bernoulli number of order n (we follow the notation of Norlund and 
Milne-Thomson for the Bernoulli polynomials). The identification of (7) in the 
limit d -* cc with the generalized form of the Euler-Maclaurin formula is valid 
when the term E(X, h, oo ) is zero. A sufficient condition for the vanishing of E is 

(8) e-2rlyIlhI g(x i iy) i -*> 0 

uniformly, y -c, in the interval 0 ? x ? cc. In addition, the validity of the 
contour integration requires that (2) must hold in the limit d -> cc. 

These conditions would unduly restrict the class of admissible functions as we 
have already noted in (i) of the Introduction; for example, the condition (8) would 

* The Euler-Maclaurin expansion for X = I is less well known. It was given by Maclaurin; 
see Enzyklopadie II C2 ?9, p. 91. 
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exclude the function g(x) = exp (-x2), yet Goodwin has shown (loc. cit.) that 
the infinite integral of this function can be evaluated with high accuracy by the 
trapezoidal sum for moderate values of h. 

It is sufficient in numerical evaluation that the bound of E be less than the pre- 
scribed error of the calculation. In general, then, we reject the condition (8) and 
the stronger form of (2) as unnecessarily restrictive. 

We shall give at the end of Section 2.3 some illustrations of the uses of equations 
(4) and (5). Before doing so, we examine the possibility of evaluating the infinite 
integral by a sequence of transformations of the type (4). 

2.2. Successive Summations. If the error term in (4) is bounded and negligible, 
the correction term on the right of this equation is a new integral which can be 
evaluated in the same manner as the first integral. This may appear to be a profitless 
manoeuvre but the range of the new integration is (0, d) instead of (0, oo); more- 
over the eaffective range of the new trapezoidal sum may be even smaller; for ex- 
ample, with X = 0, it can be seen from the first of (6) that the integrand possesses 
the damping factor exp (2ry/h) - 1 in the denominator. In these circumstances, 
we may employ a smaller interval in evaluating the correction term and the total 
number of ordinates will not be excessive. It is convenient here to modify our nota- 
tion, replacing h by h1 and d by d1 . Integrating now round the rectangular contour 

CZ Di B2 Ci 

di 

THE SUCCESSIVE LINES OF INTEGRATION ARE 
INDICATED BY HEAVY LINES AND THE SUCCESSIVE 
REGIONS ARE SHOWN THUS - 

LI' 2 3 4 
FIG. 1 
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A2B2C2D2A2 of Figure 1, the half-height of the rectangle being d2 and the tabular 
interval h2 (h2 < hi), we have for X = 0 

f g(x) dx- T - T2 fd2 g(i2x) -_ ( -i2X) 
g 

exp (2irx/h2) -1 

where 

T= hi[gg(0) + g(hi) + g(2hi) + d, 

T2 = h2['G(O) + G(h2) + G(2h2) + ] 

and 

G(x = -i g(ix) - g(-ix) 
exp (2rx/hi) -1 

The damping factor of the new error term (i.e. the contribution from the lines 
A2B2 and C2D2) is exp - (27rd2/h2) and we assume that d2 and h2 can be chosen so 
that this error term is negligible. We assume also that the contribution from the line 
B2C2 is negligible. 

If m summations are carried out, and, if at each stage the contributions from 
the error terms and from lines such as B2C2 can be suitably bounded, we have 

(9) g (x) dx Tr im I mg(imx) -g(-I dx) 
1 Jo exp (2rx/hm) - 1 

At this stage, it may be practicable to evaluate the remainder term on the right of 
(9) by an Euler-Maclaurin expansion. The process is illustrated diagrammatically 
in Figure 1 and it is evident that after each four summations we return to the real 
axis and begin a new cycle. 

A similar iteration may be used if X and this modification enables us to deal 
with a singularity of the type xa (a > -1 ) or of the type log x at the origin. 

If g(x) is analytic within the successive regions of integration, we have under 
the same conditions as above 

(go g(x) dr -E dm g(imx) - +g( -ix d 
(10) fg(x) dx-ZM,= -Id 

the character M being used to indicate that the summations are mid-ordinate. 
When g(x) is not analytic, the integral remaining after each summation does not 
possess an itAegrand of the simple form given in (10) as is evident from the ex- 
amples of Section 2.3. When there is a singularity, the decreasing tabular interval 
introduces ordinates close to the singularity but no large numbers are introduced by 
reason of the factor hr which decreases more rapidly than the ordinates increase. 

We quote here for completeness the principal formulae of trapezoidal and mid- 
ordinate type, using the notation 

nh n 

in = g(x) dx = h J g(ph) dp, if x = ph, 

Tn = 2g9 + g1 + g2 + + gn-1 + 2gnX 

Mn = 91/2 + g1(1/2) + * + gn-1/2; 
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then 

- + 1 (hD)2 - (hD)4 
12 720 30240 hTn - h hD(g- go) 
+ 

1 
-(hD)6-_ 1 - h)+ L+ 12 09600 1 479 00160 (hD)8 + * 

1 1 2 _ _ _ 

12 720 6720 I h 79 6 hD(g - go) 
+ a- .. 

L 36 28800 j 

F 1 + 11 2 191 54 
12 72-0 608 

h ,A5(g. - go). 
2497 a6 

36 28800 

D here denotes d/dx and ,, a are the averaging and central-difference operators. 
Also 

1 7 (hD )2 + 
31 _ (hD ) 

5760 hD2+9 67680(h) 
IL - hMnlh 127 

hD (g. - go), 
(hD)6 +.. 

1548 28800 

1 _ 17 a2+ 367 4 
5760 9 67680 = h 6~~~~~~~(gn - gO). 

_ 27859 6 + 

4644 86400a+ . 

It may be noted that the first term in the mid-ordinate formula is half the magnitude 
of the first term in the trapezoidal formula and is of opposite sign. This difference in 
sign is sometimes a useful check. 

2.3. Control of the Error Term in Equation (4). There is no general method of 
bounding the error term E(X, h, d) in (4) but a few illustrations will show how the 
parameters d and h can be chosen. The discussion is simplified if we notice that the 
denominator of the integrand in the error term can be replaced by unity for all 
practical values of the ratio d/h. 

When g(x) is even and analytic, the discussion is considerably simplified and 
we shall consider this case first. Inspection of (4) shows that the correction term 
is then zero for X = 0, 1. The left side of (4) is independent of d and the right side 
must also be independent; i.e. when g(x) is even, all finite choices of d yield the same 
error term. We may then use any convenient technique, such as minimizing the 
absolute value of the integrand, to bound the error term. 

For a small class of even functions g(x), trapezoidal or mid-ordinate integration 
is exact for quite large values of h. This class is defined by the conditions (2) and 
(8); e.g. the infinite integrals of sin x/x and of Jn(x)/xm [n > 0, n - m positive 
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even or zero] can be evaluated exactly for any h which is less than 2ir. When g(x) is 
not even, the correction term C(X, h, d) must be computed but we can often carry 
out the computations by forming successive trapezoidal or mid-ordinate sums. 

To illustrate the choice of d when the error-term does not vanish, we consider 
in turn g(x) = exp (-X4), A(X)GC_-ax 2iMx where I A(z) I is bounded, I z i>oo . The 
latter type of function arises frequently in numerical work. 

(i) g(x) = exp (-x4). 
On y d, we have 

exp (-z4) I = exp - (x4 - 6x2 d2 + d 4) 

and the least value of the argument in parentheses occurs for x2 = 3d2 and is - 8d4. 
We determine d by maximizing 27rd/h - 8d': i.e. d = (7r/16h)'13 and 

exp -(2rd/h - 8d4) = exp -(3rd/2h); 

for h ? ' we can obtain very high accuracy. 
* \ / \ X / \ ax2Atmix 

(ii) g(x) A (x)e 
We suppose that i A (z) i is bounded. It is then obvious that 

g(x i id) <lA exp-(ax2-md-ad2). 

Here we maximize 27rd/h - md - ad2, obtaining d = (ir/h - m/2)/a; the 
error term of the integral over (0, oo) is then 

_ ; [exp (-ad 2)1. 

If g(x) is not even, the correction teim must be evaluated by a new trapezoidal or 
mid-ordinate sum or by one of the central difference formulae quoted earlier. 

It is worth recalling that the choice of d in the above illustrations has no effect 
on the actual value of the error term; it merely enables us to obtain a satisfactory 
practical bound on the error term. 

EXAMPLE 1. 

f0 erf x erf Xx 
J x2 dx 

where 

erf x _ 2 f et2 dt. 
7r 0r 

In this example, only limited precision is possible. The error term is 

O[exp-( (27(1 + X)h )]. 

When X = 1, the error expected for h = 1, 2 is 

E < 0(e__2/2) = 0(1-2), h = 1, 

E 
<O 

(-27r2) 
O(1O-8), 

h =. 

Using 6D ordinates for h = 1 and 10D ordinates for h = we obtain 

1.98936 1 1.98904 71882 

and the latter result is correct to 9D. 
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EXAMPLE 2. 

J((X) cos (nx si- x) dx, n, integer; X > 0. 

In this example, the error term is not easily dominated and it serves as a useful 
illustration. There are more efficient ways of computing Jn (X) for large n and X; 
but we are here interested in obtaining an error bound. 

For integer n, the correction terms are zero since the integrand is an even func- 
tion of y at both ends of the range. The error term is 

2 R rcos [n(x + ib)-X sin (x + ib)] E= --R Idx x 
7r exp 2r(b- ixz)/h -1 

where we have temporarily replaced d (the half-height of the rectangular contour) 
by b to avoid a notational confusion below; since 

I cos [n(x + ib) -X sin (x + ib)] ? < cosh (nb + X sinh b) 

we have 

e -2Grb/h cosh (nb + X sinh b) 
IE I2e 1 - exp - (2rb/h) 

If b/h is large, we may replace the denominator by unity and we find after a little 
manipulation 

IEI < h dd exp ( b) sinh u 

where u = nb + X sinh b and b is determined by 

(11) h -du tanh u = 0. 
h -db- 

For practical values of u, tanh u is very nearly unity and we can deduce from (11) 
the inequality 

h < 27r = n + X cosh b 

E.g. for n 5, X = 5, h = 1r/10 

b-1.763 and E 1o-6 

or, for n 5,) X 20 

with h = r/20, i E I < 10-, 

with h = 7r/25, IE I< 11O. 

EXAMPLE 3. 

Th sin x 
JO1+ X2dx 

The error term is zero here for h < 27r. If we employ a trapezoidal sum T, with 
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interval h1 , we have 

-x)sinh x dx I- T, = 2 (1 -x) [exp (2irx/hi) - 1] 

with h1 - r, the trapezoidal sum T, is zero, and we exchange an integrand which 
alternates in sign every half-period of sin x for a positive integrand (x > 1) which 
decreases as exp (-x); there would be little profit or loss in the exchange. With a 
smaller value of h1, it is convenient to sum T, by Eulering and this requires that 
we use an integer number of half-periods; with hi = r/4 (3 ordinates in each half- 
period), the integrand of I - T, decreases as exp (-7x). A second sum T2 with 
interval h2 yields 

I - T71 - T2 = 2sin x dx 
I-Jo2 I (1 + X2) [exp (2rx/h2)-1] 

and it is now practical to employ the Euler-Maclaurin series with h2 = I or 16. 

Equivalent accuracy would be obtained by using hi = or I without employing 
T2 ; but T1 is then more difficult to evaluate. 

3. Error Bounds for Gaussian Integration. 
3.1. Gauss-Legendre. The Gauss-Legendre formula is a convenient starting- 

point. Denoting the zeros of the Legendre polynomial Pn(t) by ti and the corre- 
sponding weights by hi, we begin by expressing the difference 

fg(t) dt- hig(ti) 

as a contour integral and then use this contour integral to obtain bounds. 
If L is any simple contour enclosing the strip (-1, 1) in the z-plane, we can 

deduce from the contour integral 

1 ( g(z) dz 
27ri JL (Z t) P"'(Z) 

that 

(12) 9(t) = PI() g(ti) +1 f (z)Pl(t) dz (t - t,)P1(ti) + 2iri JL (z- t)P (z) 

if g(z) is regular within L. 
If we integrate this equation with respect to t over (-1, 1) and interchange the 

order of integration in the repeated integral on the right, we obtain 

(3 1(td -zg(ti) f' P(t) d?1 fg(z) dz fPn(t)dt (13) Jg(t) dt = E 9(1 )Lt t dt + d7iJ nz 1Z t. 
1 i ~Pn' (ti) i- t - ti ri JLPn(Z) Jiz - t 

We can now employ two known results. If z is not a real number between -1 
and +1, unless it be a zero of Pn(t), then 

2Qn(z) 1 fPn(t)dt 

* The singularity at x 1 in I - T1 requires a slight modification of our earlier procedure; 
this modification is assumed to be absorbed in T2 . 
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where Qn(z) is the Legendre function of the second kind. We also have 

Qn(z) = - Pn(z) log z + 1 - fi_1(Z) 2 z __ 

where fl-i(z) is a polynomial of order n - 1 (the coefficients of fn_1 are tabulated 
in Whittaker and Watson [10]). Using these results, we can write (13) as 

F1 1 gC ).Z 
(14) Jg(t) dt-E hig(ti) == - ()Q8(Z) dz 

the weights hi being determined by 

h . 2f,-1(ti ) 
Pn (ti) 

but they need not concern us here because they have been extensively tabulated. 
The practical use of the error term on the right of (14) depends on the fact that 

all contours L which enclose the zeros of Pn (z) are equivalent if we assume that g (z) 
is regular in a sufficiently large domain (clearly, it would not be difficult to take into 
account a finite number of poles of g(z) and we show this briefly at the end of this 
section). It is convenient to choose as contour a circle of sufficiently large radius R 
to permit the use of the asymptotic value, I z |- >0, of Qn(z)/Pn(z): 

(15) Qn(z) _ 2 (n!) -2n-l i+ 2n + 3n - n -1 + O(Z4)] 

Pn(z) (2n)!(2n + 1)! L (2n + 3)(2n - 1)Z2 + 

As a simple illustration, consider 

g(t) = eattm, m, integer. 

Taking only the first term of the asymptotic expansion for Qn (z) /Pn (z) , the modulus 
of the integrand in the error term is dominated by 

C exp {-[(2n - m) log R - aR]} 

on a large circle of radius R, the factorial constant above being denoted by C. The 
least value of the expression in brackets, qua function of R, is 

Cexp - [aR(logR - 1)], aR =2n -m, 

and the error E of Gaussian integration is given by 

?EI <2Cexp -[aR(logR -1)]; 

e.g. if m = 3, a = 1, we have 

n =5, E 4 X 10-62 

n =6, E 2 X 10-9, 

n = 7, E ?4 X 10". 

These error bounds could be improved by a more careful analysis but they are 
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simply obtained and they are not unduly pessimistic, the actual errors being 

n = 5: 1.0 X 10 7 n = 6: 2.1 X 10-" n = 7: 4.8 X 10-W. 

If g(z) is a meromorphic function, the contribution of the residues at the poles 
of g(z) to the right side of (12) is some function of t, p(t) say, and (14) is then 
replaced by 

(16) f'g(t) dt- hi g(ti) p(t) dt = f (z)Q(z)dz 

and the error term may be estimated as above. The right side of (16) vanishes and 
the integration formula is exact if g(z) is a meromorphic function and if 

I g(z) I O( iz 12n-1), l zI- 

uniformly with respect to the argument of z. We assume here that g(z) is such that 
the integrals in (16) exist. 

For example, if g(z) satisfies the above inequality and has simple poles at the 
points ak with residues Ak, then from (16) 

(17) f g(t) dt = hi g(ti) - 2 PA(a0) 

3.2. Gauss-Laguerre and Gauss-Hermite Formulae. The method used in Section 
3.1 is applicable here but some modification is needed since the range of integration 
is infinite in the Gauss-Laguerre and Gauss-Hermite formulae. We consider Gauss- 
Laguerre in some detail; the analysis for Gauss-Hermite is similar and may be 
omitted. 

Supposing g(z) to be regular within a contour L which encloses all the zeros of 
the Laguerre polynomial Ln (z), we can write 

g(t) - (ti)Ln(t) +1 g(z)L.(t) dz, g (t - t )L '(t ) 2iri J (z - t)Ln(z) 

the summation on the right being effected over the zeros ti of Ln(t). It is convenient 
at this point to take for contour the circle z- Rie". We now multiply (17) by et 
and integrate with respect to t over (0, R), interchanging the order of integration 
in the double integral. We obtain 

R (t) dt - Z 
g(ti) 

R et'Ln() dt 
/ o i ~~~~~Ln, (t i) t t-tj 

(18) Jo L R(t )Jt 

=2l |L(()dz 
- 

t(t dt, R< Ri. 

In the limit, R, R1 -> oo, we can write 
00 

(19) e-tg(t)- IHig(t) = E 

where the Hi are the Laguerre weights and the error term, E, is defined by 

__ g (z) fRe~t Ln(t (20) E- lim 21 () dz c dt. 
R--oo;Rj >O 2Xt L Ln(Z) z -t 
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From the analysis of the Gauss-Legendre formula, we anticipate that the error 
term will vanish if 

(21) z(z) o < 0(IzI2-1) |z|-*o, 0 _ 0 < 2ir. 

To show this, we split the error term into two parts E1 and E2 by expanding the 
denominator z -t in (20): 

El = lim f I (z) E m e ttmL,(t) dt 
2i7ri~ Ln L(z) mn Zr+ R, 

and 
1 fg(z) dz ~R eGttn+lLn(t) 

E2 = lim 
2i.i JZ+2Ln(z) Jo (1- t/z) dt. 

Considering E1 first, we may write 
n 1 nR 

E + J e-ttmLn(t) dt = e o -ttmLn(t) dt + E(n, R) 
M-0 Zm+l J0 zM 

and the epsilon term approaches zero, R -> *o. On using the orthogonal property 
of the Laguerre polynomials, only the term m = n survives in the summation on 
the right; we have 

gLz+L(z) 
d 

2E1r 
< 

Ro;lm [ 
)n (n!) + E(n, R)] AgZn dl 

and I E1 - 0 if (21) is satisfied. 
To bound E2, it is convenient to write 

R, = eR where z = RietG; 

the inner integral in E2 can now be written as 

JR -ttn+ L (t) dt Rj 
e-ttn+lLn(t) dt + e-R-iO 

JR 
e-tt_L(t) dt 

and the second integral on the right approaches zero, R -- co. Since the first integral 
on the right is bounded, it follows that I E2 I vanishes if g(z) is an entire function 
satisfying (21), i.e., if g(z) is a polynomial of degree not greater than 2n - 1. 

We may obviously extend the analysis to meromorphic functions which satisfy 
(21). Modifying (17) to take account of the poles of g(z), we have in the notation 
of (16) 

00c 

e-tg(t) dt H Hig(t ) + e-tp(t) dt. 

Conclusion. The error of the n-point Gauss-Legendre procedure depends on n 
and also on the function to be integrated. It would be useful if we had some estimate 
of the dependence on n. 

The results obtained above for the Gauss-Legendre case permit a conjecture. 
If we use the Stirling approximation for the factorial terms in the expression (15) 
for Qn(z)/Pn(z) and retain only the dominant term, we have 
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Q. (z) ( 2z )-2Xl 
Q-(z) 

for large n and j z 1(1 z > n). For the function g(z) = exp (az), Section 3.1 yields 
the error estimate 

En, _ 27r exp-[(2n + 1) log 2 + 2n (log n - 1)]. 

A similar expression for E?+1 is obtained if we replace n by n + 1. We conjecture 
that an estimate of the ratio En+?/En may be obtained by taking the ratio of the 
corresponding expressions, i.e., 

E+ =O( a 4). 

It does not appear easy to confirm or disprove this conjecture. 
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