
Chebyshev Approximations of a Function 
and Its Derivatives 

By D. G. Moursund 

1. Introduction. This paper considers the problem of the uniform approximation 
of a function and its first r derivatives. Several theorems concerning the number 
and nature of the extremals of a best approximation are obtained. These results 
are applied to a special case of approximating a function and its first derivative, 
and a uniqueness theorem is obtained. 

2. Statement of the Problem. Let X be a compact subset of the real line. Let 
n _ 0 and r > 1 be fixed integers. The function f(x), which is to be approximated, 
and the base functions 4o(x), 4l(x), 0, 4(x) are all assumed to have continuous 
rth derivatives. Let wo(x), w1(x), * , wr(x) be positive weight functions, con- 
tinuous on X. 

1. Definition. M[g] = maxk=o,,... rl wk(x)Dkg(x) II where fl denotes the uni- 
form norm on X, and g has a continuous rth derivative. 

2. Problem. Find real scalars ao, al, * , an such that M[Z aj4i)(x) - f(x)] is 
a minimum. 

The function f miay be given by a table or by other means. By the statement 
g _ Owe shallmeanthat Dg(x) = Oforlk = 0,1,... ,randforallx E X.The 
functional M is a norm, so that 

3. 0 ? M[g] < oo. 
4. M1[g] O iff g=0. 
5. M[tg =i t I M[g] where t is any real number. 
6. M[g + h] ? M1[g] + M[h]. 
Points in Euclidean n + 1 space are represented by a = (ao, a1 ,*** an), 

= (bo, b1, * **, bn) etc., while polynomials are given by P(x, a) = ? 
etc. In addition we let e = inf M[P(x, a) - f] where the infimum is taken over 
all a inn + 1 space, and let R = {oa E En+l:M[P(x, a) - f] = e}. The base func- 
tions 4o, )l1, ... I On are assumed to be linearly independent in the sense that 
P(x, a) = O only ifa - 0. 

Using the fact that the norm 1l is a continuous linear functional on E n+l it 
follows that the set R of best approximations is closed, bounded, convex and non- 
empty. These are standard results, and proofs may be found in Achieser [1] and 
Buck [2]. 

3. Example. The following example was chosen to illustrate the difference 
between approximating a function and its derivatives, and ordinary Chebyshev 
approxi-mation. Let wo 1, w, _1 , r = 1 and suppose that f and Df are given by 
Table 7. The problem is to find ao, a1, * * , an for various n, so that 

M[ao+alx+ ... +ax-fn 

is a minimum. 
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7. TABLE. 

x -1 -1/V3 0 1/V/3 1 

f(x) 1 0 -1 0 -1 
Df(x) 0 1 0 1 0 

First consider the case n = 4. For notational convenience let xl = -1, 
x2 = -1/V/3, X3 = 0, X4 = 1/V3 and X5 = 1. Since M[f] = 1, the set R of best 
approximations must be contained in the region of Euclidean 5-space whose points 
a satisfy the relation M[P(x, a) - f] ? 1. This region is defined by the in- 
equalities 

(1) -1 < P(xi, a) -f(xi) < 1, i = 1 2, , 5, 

(2) -1 _ DP(xi, a) -Df(xi) < 1, i = 1, 2, ,5. 

Consider the following subsystem of inequalities: 

(3) ao-a, + a2-a3+ a4 0_ from (1),i=1, 

(4) -aO-al-a2-a3-a4_O from (1),i=5, 

(5) a, - 2a2/V\/3 + a3 - 4a4/3V/3 _ 0 from (2), i = 2, 

(6) a, + 2a2/V\/3 + a3 + 4a4/3V/3 > 0 from (2), i = 4. 

From adding (4), (5), (6) and comparing the result with (3) it follows that any 
solution to the system (1), (2) must satisfy 

(7) ao-a,+a2-a3+a4 = 0, 

(8) -ao - a, - a2- a3 - a4 = 0, 

(9) a1 - 2a2/V3 + a3 - 4a4/3V3 = 0, 

(10) a1 + 2a2/V3 + a3 + 4a4/3V/3 = 0. 

From (7), (8) we get ao + a2 + a4 = 0 and a, + a3 = 0, while from (9), (10) it 
follows that a2 + 2a4/3 = 0. Thus polynomials satisfying (1), (2) must be of the 
form 

P(x, a) = S(X - X3) + t(-3 -2X2/3 + X4), 

where s and t remain to be determined. Table 8 gives the results thus far obtained. 

8. TABLE. 

x -1 -1/A/3 0 11/V3 1 

P - f -1 -2s/3V3 - 4t/9 -t/3 + 1 2s/3V3 - 4t/9 1 
D(P - f) - 2s - 8t/3 - 1 s - 1 -2s + 8t/3 

It is now evident that if P(x, a) is a best approximation to f, then 
M[P(x,a) -f] = 1. Moreover every polynomial of the form P(x, a) = s(x - x3) + 
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t(- - 2X2/3 + x4) is a best approximation provided 

(11) -1 < -2s/3/3 - 4t/9 < 1, 

(12) -1_-t/3+1_1, 

(13) -1 ? 2s/3/3 - 4t/9 < 1, 

(14) -1 ? -2(3s + 4t)/3 < 1, 

(15) -1 < s 1, 

(16) -1 ? 2(-3s + 4t)/3 < 1. 

The solution to this system is a triangular region in the s, t plane defined by t _ 0, 
-3s + 4t < 2, and 3s + 4t < 3. Thus the case n = 4 provides an example of a 
two-dimensional solution space. 

To solve the case n = 3 it is merely necessary to note that the coefficient of X4 

must be zero. Hence all solutions are given by P(x, a) = s(x - x3), - < s < 2 
For the cases n = 0, 1, 2 it is evident that the only solution is s = 0, t = 0, so 

that P(x, a) = 0 is the unique best approximation. 
For n > 4 the problem can be formulated as a linear programming problem, and 

solved using standard techniques. Solutions for these cases are given in 10.-12., 
with a summary of the results in Table 9. The values of e have been rounded to four 
places, while the coefficients of the polynomials are given to five decimal places. 
The case n = 6 has a solution space which is at least one dimensional. The solution 
to n = 5 is a point in the solution space to n = 6, so these two have been com- 
bined in 10. 

9. TABLE. 

n 4 n = 5 n = 6 n = 7 n = 8 n ? 9 

e = 1.0 e .8632 e = .8632 e = .5222 e = .4227 e = 0 

10. n = 5, n = 6. P(x) = - .13681 - .86319x + .27362x2 + 1.81595x3 
- .13681x4 - 1.08957x5. 

x -1 -1/V3 0 1/V/3 1 

p F f -.8632 .1580 .8632 -.2796 .8632 
D(P - f) - .8632 - .8632 - .8632 - .4419 - .8632 

11. n = 7. P(X)= -.47789 - .52211x + 3.24209x' + 10.49572X3 
6.54944X4 - 22.54194x5 + 3.37262x6 + 11.67781x7. 

x -1 -1/V/3 0 1/V/3 1 

p - f - .5221 -.5222 .5221 .5222 - .3031 
D(P - f) - .5221 - .5220 - .5221 - .5220 .5221 
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12. n = 8. P(x) = - 1.42265 - .42265x + 11.38120x2 + 8.10363x3 - 

31.29829X4 - 16.74871x5 + 34.14359x6 + 8.49038x7 - 12.80385x8 

x -1 -1/V/3 0 1/X/3 1 

P f f - .4226 - .4226 .4226 .4226 .4226 
D(P - f) - .4226 - .4226 - .4226 - .4226 - .4226 

4. Characterization. Instead of considering just one error function P - f, as in 
ordinary Chebyshev approximation, we must consider r + 1 weighted error 
functions. 

13. Definition. Lk(x, a) W k(X)Dk[P(x, a) -f(x)]. The functions Lk(x, a), 

defined for all oa in Euclidean n + 1 space and k = 0,1, ... r are called weighted 
error functions. 

14. Definition. Suppose M[P(x, a) - f] = d. The pair (xo, Ik), where xo E X 
and 0 ? k < r is an integer, is called an extremal with respect to the approximation 
P(x, a) tof if I Lk(xo, o) I = d. 

Because X is compact and the functions Lk(x, a) are continuous, it is evident 
that every approximation has one or more extremals. We shall now establish some 
results concerning the extremals of a best approximation. 

15. Definition. If a E R, the following notation will be used: Ck(a) = 

{xC X: ILk(x, a)I = e}. 
16. THEOREM. There exists an a C R such that for every 3 E R, Ck(a) C Ck(G) 

for k-O= , 1, * * *, r. 
Proof. Let mn be the dimension of the convex set R. If in =0 , R is a single point, 

the best approximationi is unique, and the theorem is true. If m > 1 then R has a 
non-empty interior. Let ae be an arbitrary point in the interior of the set R. It will 
be shown that this point satisfies the assertion of the theorem. 

Let d Fz a be an arbitrary point of R. Extend the line caj to the boundary of R, 
calling the points of intersection a, and j1 as indicated by Figure 17. If A is a 
boundary point of R, then j1 = A. 

>1 GN1~~~~~~0 

Now- consider the functions L4X, qal + (1 - q)Gi] where 0 < q < 1. If 
DkP(xo, 1) # DkP(xO, j1) then one of the following relations holds: 

(17) Lk(xO , ae1) < Lk[O , qal + (1 - q) O] < Lk(xo, 01), 

(18) Lk(xO, i1) < Lk[xo, qoal + (1 - q)Oi] < Lk(xo, ae1). 
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Hence if q E (0, 1) is arbitrary then xo E Ck[qai + (1 - q)3l] if and only if 
xo E Ck(ael), xo E Ck(3l) and D kP(xo , ali) = D kP(xo, f1). 

Since ae is an interior point of the line segment a,1} it follows from the above 
result that if xo E Ck (a) then xo E Ck (al), Xo E Ck (13) and D P (xo, al ) = 
DkP(xo, f13). This implies, using the result again, that xo E Ck[qal + (1 - q)f1] 
for 0 < q $5 1, which completes the proof. 

18. COROLLARY. Suppose the best approximation is not unique, and let a be a 
point in the interior of R. Then if P(x, 03) is any best approximation, Dk(xo, c) = 

Dk(xo, 03) for every extremal (xO, k) of the approximation P(x, ca) to f. 
Given an approximation P(x, ae) to f we would like to have a means of telling if 

it is a best approximation. In addition, if P(x, ae) is not a best approximation we 
would like to be able to find a better approximation. The following definition is 
useful in this endeavor. 

19. Definition. Suppose M[P(x, ca) - f] = d. A polynomial P(x, A) is said to 
satisfyCondition A with respect to the approximation P(x, ae) tof, if for each extremal 
(xO, k) of this approximation, sgn DkP(xo , 3) = -sgn Dk[P(xo, a) - f(xo)]. 

20. THEOREM. A polynomial P(x, ca) is a best approximation to f if and only if 
there is no polynomial P(x, /) which satisfies Condition A with respect to the approxi- 
mation. 

Proof. Suppose first that P(x, a) is not a best approximation, so that there 
exists a polynomial P(x, d) such that M[P(x, d) - f] < M[P(x, ae) - f]. Then 
the polynomial P(x, A-oc) satisfies Condition A with respect to the approximation 
P(x, ae). 

Next suppose that P (x, d) satisfies Condition A with respect to the approximation 
P (x, ae). Using the compactness of X and the continuity of the functions DkP (x, ) 
and Lk(x, a), one can establish that for each k there exists a constant Tk > 0 such 
that if 0 < t ? Tk then 11 Lk(x, ad + t) 11 < M[P(x, a) - f]. A proof of this result 
may be found in Remez [3, p. 38]. Hence if 0 < t ? min [To, T1, , Tr] 
then M3[P(x, at + t)-f] < M[P(x, a) - f]. 

This theorem provides the basis for a computational scheme similar to the first 
method of Remez [3, p. 36]. In addition it provides a useful tool for investigating 
the uniqueness of a best approximation. 

We know that if a differentiable function has a relative extremumn at a point 
interior to its domain of definition, then the derivative must be zero at that point. 
Under proper assumptions this allows us to derive additional conditions which a 
best approximation must satisfy. 

21. THEOREM. Let (xo, k) be an extremal of the approximation P(x, ca) to f, with 

M[P(x, c) - f] = d. Suppose that at the point xo both Dk+1[P(x, c) - f] and Dwk(x) 
exist. If for every E > 0 there exist points x1 , X2 in X such that xo - e < x1 < xo < 
X2 < Xo + E then DLk(x, a) = O at the point xo . 

Proof. Suppose that Lk(xo, ae) = d. Then 

DLk(xo, a) = lim Lk(x, a) -d 
x->xo X - XO 

For all x, Lk(x, ca) - d ? 0. Hence if x < xo then (Lk(x, ca) - d)/(x - xo) > 0 
while if x > xo then (Lk(x, ca) - d)/(x - xo) < 0. Since the approach to the limit 
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may be made from either side of xo, through points of X, it follows that the limit is 
zero. A similar argument holds if Lk(xo, a) = -d so the proof is complete. 

22. COROLLARY. Suppose that P(x, a) is a best approximnation to f, with a in the 
interior of R, and that the hypotheses of Theorem 21 are satisfied at the point (xo, k). 
Then for any other best approximation P(x, /3) it follows that 

D kP (xo, a) = D kPp(xo, d )). 

Proof. From Corollary 18 we know that (xo, k) is an extremal of the approxima- 
tion P(x, d) to f. Hence 

DLk(xo, a) = 0 = DLk(xo /3). 

Using the product rule for differentiation we have 

Dwk(xo)D kt(xo, a) - f(xo)] + wk(xo)D kl[P(xo, a) - f(xo)] = 0, 

Dwk(xo)D k[P(xo, 3) - f(xo)] + wk(xo)D k?[P(Xo, /3) - f(xo)] = 0. 

Since Dk[P(xo, a) - f(xo)] = Dk[P(Xo, /) -f(xo)] and Wk(XO) # 0 the result is 
established. 

5. Uniqueness. The previous theorems give us considerable information about 
the extremals of a best approximation. We shall use these results to establish the 
following theorem. 

Let X = [-1,1 ], r = 1, 7 = xi, i = 0,1, *1 * , n, and suppose wo'(x), w1'(x), 
and f" (x) exist. The weight functions are assumed to be positive. 

23. THEOREM. Under the above conditions one of the following assertions is true: 
(19) The best approximation is unique. 
(20) The best approximation is unique except for an additive constant; moreover, 

if P is any best approximation then DP is the unique best Chebyshev approximation of 
degree n - 1 to Df with weight function w1(x). 

We shall first discuss the conditions under which the second assertion will be 
true. Suppose there exists a best approximation P(x, a), with M[P(x, a) - f] = e, 
such that II wo(x)[P(x, y) - f(x)] || < e. Then || wi(x)D[P(x, y) - f(x) ] I = e. 
Now suppose that assertion (20) is false, so that there exists a polynomial P(x, a) 
such that it wi(x)D[P(x, a) - f(x)] 11 < e. 

Define a polynomial 

(21) Pq(x) q DP(x, a) dx + (1 - q)P(x,,y), for 0 ? q < 1. 

Then 

wo(x)[P,(x) x)] 11 _ q wo(x) [ DP(x, a) dx - f(x)] 

+ (1 - q) llwo(x)[P(x, y) -f(x)] 11. 

Hence there exists a t > 0 such that if 0 < q _ t then II wo(x) [Pq(x) -f(x)lll < e. 
However, iI wl(x)D[Pq(x) - f(x)] I _ q II w1(x)D[P(x, a) - f(x) fl + 
(1-q) II w,(x)D[P(x, ay) - f] < e. Hence if q < t then Pq(x) is a better approxi- 
mation to f than is P (x, ay); this is a contradiction. Therefore, if there exists any 
best approximation P(x, y) such that II Lo(x, ry) II < e then (20) is true. 
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From the theory of equations we know that if two polynomials of degree n agree 
on a set of s + t points, where s > 0 and I _ 0, if their first derivatives agree on a 
subset of t of these points and if s + 2t ? n + 1, then the polynomials are identical. 
In addition if s + t distinct points are specified, with s > 0, then it is possible to 
find a polynomial of degree ? n which has arbitrary values on the s + t points, and 
whose derivative has arbitrary values on a subset of t of these points, provided 
s + 2t < n + 1. For the remainder of the proof we shall assume, for each a E R, 
that 11 Lo(x, a) fl - e. Let A be a point in the interior of R. For notational con- 
venience define: 

(22) S Co() 

(23) T Ci(3) 

(24) U = Sfl Tfn (-1,1). 

Let s, t, u be the cardinality of S, T, U respectively. 
Using Corollary 18 and Corollary 22 it follows that if P(x, a) is any best approxi- 

mation then 

(25) P(x,fd) =P(x, f) V x E S, 

(26) DP(x, a) = DP(x, d) V x Es n (-1, 1), 
(27) DP(x, a) = DP(x, d) V x E T, 

(28) D2P(x, a) = D2P(x, ,) V x E Tfn (-1, 1). 
If we assume that a and d are distinct we can now give a lower bound for n, the 
degree of the approximating polynomials, in terms of s, t, u. We can compute an 
upper bound for the degree of a polynomial which satisfies Condition A with respect 
to the approximation P(x, d), in terms of the same s, t, u. We shall show that the 
former is > the latter, leading to a contradiction of the assumption a 5 3, and com- 
pleting the proof. 

Since the points + 1 and -1 can be in S and T independently, it is necessary to 
consider each possible placement of these points as a separate case. The arguments 
involved in each case are similar, so that only one example will be given. A summary 
of all cases is given in Table 24. 

Consider the case of -1 E S, +1 CE SI-1 E T, +1 E T. Then 

(29) DP(x, a) = DP(x, /3) for the s -2 points x E S n (-1, 1), 
(30) DP(x, a) = DP(x, j3) for the t points x E T, 

(31) D2P(x, a) = D2P(x,f3) forthe t-2 points x E Tn (-1, 1). 
Since U = S n T A (-1, 1 ), u of the relations (29) are identical to those given 

in (30). Hence the polynomials DP(x, a) and DP(x, 13), which are of degree n - 1, 
agree on a set of (s - 2 - u) + t points, and their derivatives agree on a subset 
of t -2 of these points. Hence if n-1 ? (s -2-u) + t + (t -2) - 1 then 
DP(x, a) =-DP(x, 13) and a = d. That is, the assumption a 3 a forces the con- 
clusion n > s + 2t u - 3. 

A polynomial P(x, y) will satisfy Condition A with respect to P(x, A) if 
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sgn P(x, y) = -sgn Lo(x, 3) for x E S, 

sgnDP(x, y) = -sgnLi(x, 3) for x E T. 

In the case we are considering there are s points in S, t points in T and t - u - 2 
points which are in T but not in S. Thus a polynolmiial which is to have arbitrary 
values on S U T, and whose derivative is to have arbitrary values on T, must 
satisfy a total of s + (t - u - 2) + t conditions. It follows that there is a poly- 
nomial P(x, y) of degree <s + 2t - u - 3 which satisfies Condition A. This com- 
pletes the proof in this case. 

24. TABLE. 

Condition A is 

Case a = satisfied by a unless n ? polynomial 
of degree 

-1 E S, +1 E S, -1 E T, +1 E T s + 2t - u - 3 s + 2t - u - 3 
-1 E S, -1 E T, +1 E T s + 2t-u-2 s + 2t-u-2 

+1 E S,-1 E T, +1 E T s + 2t-u-2 s + 2t-u-2 
-1 E T,?+1 E T s+2t-u-2 s+2t-u-1 

-1 E S,+1 - S:-1 T s+2t-u-2 s+2t-u-2 
-1 E Sy -1 E T s + 2t-u-1 s + 2t-u-2 

+1 E Sy-1 E T s + 2t-u-1 s + 2t-u-1 
-1 E T s + 2t-u s + 2t-u-1 

-lES,+1 E Sy +1 E T s+2t-u-2 s+2t-u-2 
-1 E Sy +1 E T s + 2t- u -1 s + 2t- u- 1 

+1 E S, +1 E T s+2t-u-1 s+2t-u-2 
+1 E T s+2t-u s+2t-u-1 

-1 E S, +1 E S s + 2t-u-1 s + 2t-u-1 
-1 ES s+2t-u s+2t-u-1 

+1 E S, s+2t-u s+2t-u-1 
No points of =tl in S or T s + 2t-u + 1 s + 2t-u- 1 

5. Remarks. The theorem just proved is, of course, true if the interval [-1, 1] 
is replaced by any finite interval. A valuable application of this theorem is the case 
of wo(x) 1 and w1(x) k, a positive constant. In this case we can readily deter- 
mine which of (19), (20) characterizes the solution to the approximation problem. 
Let P(x) be such that DP(x) is the unique best Chebyshev approximation of 
degree n - 1 to Df(x). Pick the constant coefficient of P so that fl P - f fI is as 
small as possible. Then if 1 P - f II _ k iJ D(P - f) 11 it follows that the best ap- 
proximation will be unique; otherwise, (20) characterizes the solution. The com- 
putational aspects of this problem are quite interesting. A computational scheme 
will be presented in a later paper. 
Michigan State University 
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