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As we can see, the agreement with the desired value, u(t) = 1, is excellent. 

7. Discussion. Consider a system of renewal-type equations, given, say, in 
matrix form: 

t 

(7.1) X(t) = F(t) + f K(t - s)X(s) ds. 

Equations of this type arise naturally in the study of multidimensional branching 
processes; see [6], [7]. 

If X(t) is a 5 X 5 matrix, we are required to store 25 functions (i.e., the elements 
xij(t), i, j = 1, 2, *.. , 5) if we proceed in the usual fashion. If high order accuracy 
were required-say, intervals of 1Oj over 0 < t < 5-we would find that rapid- 
access storage capacity would be exceeded. 

On the other hand, if we use the foregoing technique, differential approximation 
of order 5 would lead to the task of solving about 250 simultaneous differential 
equations plus those required to determine F(t). This is a simple matter for a 
modern computer. Furthermore, it is clear that we could use an approximation of 
order 10 without coming close to the storage capacity. 
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On the Numerical Solution of Equations of 
the Abel Type 

By Henry E. Fettis 

The integral equation known as Abel's has the general form 

x 

(1) f(x) = gq(t)(x - t)- dt 

where a is a real number, and 

O < a < 1. 
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The function f(x) is supposed known and it is required to find the function g (t). 
The solution is known to be [1]: 

(2) g(x) = si a ) [d ff(t) (x - t)< dt] 

Because of the singularity, the differentiation can not be carried out explicitly. 
However, if an integration by parts is first made, Equation (2) takes the form 

sin ar d x-d (3) g (x) = Si a7r- [xtf (0) + fI f(t) (x -t)d , 

and if it is assumed that f' (t) is finite, the differentiation under the integral can be 
performed and we get 

(4) g(x) = si f [f(O)xa-' +f f'(t)(X - t)a1 dt 

While both Equations (2) and (4) give the theoretically correct solution to Abel's 
equation, neither are suitable to compute from in problems where no explicit mathe- 
matical expression for f(x) is known. First, there is the problem of the singular 
behavior of the integrand when t = x, and while this may be circunlvented in 
several ways, either by an algebraic substitution which removes the singularity or 
by use of a quadrature formula which inherently takes into account the nature of 
the singularity (see e.g. [2]), there is an even greater barrier to the numerical prob- 
lem, namely the fact that both expressions depend not on f(x), but on its deriva- 
tive. In fact, it is most often the case that f(x) is obtainable only from measured 
data and, as is well known, the determination of accurate derivatives in such 
instances is extremely difficult, if not impossible. We, therefore, need a form of 
the solution in which f'(x) does not appear, and such a solution may readily be ob- 
tained if the integration by parts of Equation (4) is carried out in a somewhat 
different manner; namely, let 

u = (x - t)1-1, dv = f'(t) dt, 

du = -(a - 1)(X - t) -2 dt, v = f(t) - f(x). 

Then, Equation (4) becomes 

g(x) = sin 7 4f(0)x lI-[f(t) - f(x)][(x -t) 

(5) xf+ (1 a) ff(x) -f(t) -t)al dt} 

or 

(6) g(x) s xaLf(x) + (1 - a) I ft (x - t)a dt]. 

It will be noted that while (6) inherently implies the existence of f' (x) in sonme 
sense in order that the limitt,+ [(f(x) - f(t) )/(x - t)] be defined, it does not ex- 
plicitly involve the derivative in any way. Thus, the only difficulty in evaluating 
Equation (6) numerically by quadrature would arise if it became necessary to 
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evaluate the integrand at the point t = x. This would indeed be the case if a "closed" 
quadrature formula (i.e., one which involves the end points) were used. However, 
other quadrature formulae are available which do not require knowledge of the 
integrand except at interior points of the interval of integration, and, of these, 
perhaps the most suitable is the Gaussian type. Here the approximate value of 
the integral is expressed as a linear combination of the integrand (not including 
the singular term (x - t) "') evaluated at properly selected points and multiplied 
by appropriate weighting factors. (See e.g. [3].) 

For this purpose, it is more convenient always to have a fixed interval of in- 
tegration, and to this end we set 

t = x(1 - u) 

and direct attention to the integral involved in Equation (6) in the form 

f f(x) -f[x(1 - u)]I dU (7) -u' du. 
u 

To determine the ordinates and weight factors for the Gaussian quadrature of the 
above integral we need to find the zeros of that set of polynomials 5Yn(a, u) which 
are orthogonal on (0, 1) with respect to ut as weighting function. These poly- 
nomials therefore satisfy the relation 

1 

(8) J ua-1 fn(a u);n (a, u) du = 0 

whenever m e n. They belong to a more general class of orthogonal polynomials 
known as the Jacobi Polynomials which satisfy a similar orthogonality relationship 
with respect to the weighting function 

(9) u (1 -u) 

The first four Jacobi polynomials for the case a = - are given below: 

Yo6(a, u) = 1, 

51 (a,U) 
a 

1 - +U, 
a 

52(, ) 
+2 u + (a + 2)(a+ 3) 

u2, 12 a a(a +1) 

a +3 (a +3) (a +4_)2 3(a, U) 1-3 + u + 3 u 
a a (a +1) 

(a +3)(a +4)(a +5) u3 

a(a + 1)(a + 2) 

The general expression for in is readily deduced by induction. All zeros of the n,, are 
real and lie in the interval 0 < u < 1. Further, if ui is any such zero, and if 

I 1 UO- 5 f(U)d 
(10) H 

y~'in (UO) U - Ui 

then the integral 
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is approximated by 

(12) Hiq (ul) + H2q$(u2) + + H.q$(u.), 

and the approximation coincides with the exact value if p is a polynomial of degree 
(2n - 1) or less. 

Since the most frequently encountered value for a in Abel's equation is 2, the 
ordinates and weight factors for this case are listed in Table Al, Appendix 1, to 
ten places, for n = 1 up to n = 8. The following example illustrates their use and 
also demonstrates the accuracy obtainable with relatively few ordinates. The 
equation considered is 

(13) f (x -t)-112g(t) dt = x 

for which the explicit solution is 

(14) iig(x) = x-/2 1 + 2x'12ex e_t2 dt] 

For this example, Equation (4) takes the form 

(15) irg(x) = X/2 [e + 1 j' (er - e (1-t)) t-1/2 dt] 

Table 1 gives the results using the Gaussian coefficients for selected values of n 

TABLE 1 
7rg(x) as found fromn Equation (14) 

1/2 1rg(x) 

.5 3.184593 
1.0 5.060157 
1.5 16.9132453 

as well as the more exact values calculated from Equation (14). This table illus- 
trates the high degree of precision which is attainable by the use of the present 
method. 
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TABLE 1-Continued 
Calculation of g(x) from Equation (15) 

x = .25 

ti 0 (ti) I Hi 

one .3333333 .3079950 2 
point 

wrg(x) = 3.184040 

two .1155871 .3164127 1.3042903 
points .7415557 .2930075 .6257097 

7rg(x) = 3.1845929 

x = 1.0 

one .3333333 2.311644 2 
point 

7rg(x) = 5.029920 

two .1155871 2.567064 1.3042903 
points .7415557 1.919435 .6957097 

7rg(x) = 5.060161 

three .0569391 2.6423418 .9358279 
points .4371978 2.2019707 .7215231 

.8694994 1.8158532 .3426490 

7rg(x) = 5.060157 

x = 2.25 

two .1155871 18.797264 1.3042903 
points .7415557 10.382250 .6957097 

7rg(x) = 16.90520 

three .0569391 20.03654 .9358279 
points .4371978 13.58656 .7215231 

.8694994 9.36913 .3426490 

7rg(x) = 16.91319 

four .0336483 20.55933 .7253676 
points .2761843 15.89908 .6274133 

.6346775 11.36443 .4947621 

.9221560 8.99664 .2024571 

7rg(x) = 16.91325 
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APPENDIX 1 

TABLE Al 
Ordinates and weights for Gaussian quadrature with weight function x-1/2 

1 ~~~~n 1 x-12f (x)dx Hif (xi) 

xi Hi 

n = 1 1 .33333 33333 2.00000 00000 

n = 2 1 .11558 71100 1.30429 03097 
2 .74155 57471 .69570 96903 

n= 3 1 .05693 91160 .93582 78691 
2 .43719 78528 .72152 31461 
3 .86949 93949 .34264 89848 

n = 4 1 .03364 82681 .72536 75668 
2 .27618 43139 .62741 32917 
3 .63467 74762 .44476 20689 
4 .92215 66085 .20245 70726 

n = 5 1 .02216 35688 .59104 84494 
2 .18783 15677 .53853 34386 
3 .46159 73615 .43817 27251 
4 .74833 46284 .29890 26983 
5 .94849 39263 .13334 26886 

n= 6 1 .01568 34066 .49829 40916 
2 .13530 00117 .46698 50730 
3 .34494 23794 .40633 48535 
4 .59275 01277 .32015 66571 
5 .81742 80133 .21387 86520 
6 .96346 12787 .94350 67278 

n= 7 1 .01167 58719 .43052 77068 
2 .10183 27040 .41039 62274 
3 .26548 11513 .37107 67950 
4 .47237 15370 .31440 63344 
5 .68426 20157 .24303 71414 
6 .86199 13332 .16031 61744 
7 .97275 57513 .70238 92066 

n = 8 1 .00902 73770 .37890 12208 
2 .07939 05598 .36520 68301 
3 .20977 93686 .33831 30388 
4 .38177 10534 .29919 19776 
5 .57063 58202 .24925 79425 
6 .74931 73785 .19031 70234 
7 .89222 19743 .12450 70479 
8 .97891 42102 .05430 49188 


