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On the Reduction of an Arbitrary Real Square 
Matrix to Tridiagonal Form 

By H. H. Wang and R. T. Gregory 

1. This note is written for the purpose of making some remarks relative to a 
paper by C. D. La Budde [1] in which he describes an algorithm for tridiagonalizing 
an arbitrary real square matrix using similarity transformations. We shall refer to 
equations in [1] by their numbers. 

2. La Budde's algorithm is composed of n - 2 steps. The generic jth step con- 
sists essentially of a similarity transformation of the form (see (3.4) in [1]) 

(1) A' = [Vj(In-j + aXYT)] A [Vj(In-j + bXYT)], 

where the components of X and Y (see (3.8)-(3.11) in [1]) are chosen so as to 
produce zeros in the off-tridiagonal positions of the jth row and jth column of A'. 
Thus at the completion of the (n - 2)th step the matrix is in tridiagonal form. A 
sufficient condition for continuation at the jth step is that the number Sj (see (2.5) 
in [1]) does not vanish. 

3. La Budde [1, p. 436] says, "In order to continue the algorithm into step j + 1, 
we must be certain that S+ 1 0 ... . Now a, b are arbitrary (except for sign) so 
we may theoretically choose a, b I so thatS11 $0.... l al, b I could 
be determined by trial and error starting . . ." It is our purpose to demonstrate 
that we may not always be able to choose I a i and I b I in order to insure that 
S+ , $0. We shall do this by displaying some matrices which are counter examples. 
These matrices fall into two categories. 

First category. If at some step of the reduction, say the ith step, the matrix A 
is in the "reduced form" (here and afterwards the subscripts denote the size of the 
submatrix) 

At I At,_ 
(2) ---- j- 

O An_t_ 

with t > i, where 

r 1~0- 

(3) At fA T 

L0 eI At_ j 

and where Ai is an i X i tridiagonal matrix and f, and et are vectors of dimension 
t- i, then, not later than step t, the procedure will fail to continue. This will happen 
because at the (t - 1)th step the matrix A will have the form 
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At_1 
(4) l bt1 

L 0 Ct-i An-t+1 

in which ct-i is a null vector except for its first component at, t-, and the first 
column of An?t+1 is null except for its first element att . Hence, no matter what 
values of a and b are chosen, the vector X will have its last (n -t) components 
zero. Therefore, in the matrix A' of (1), 

akt= O? (k= t + 1, ,n). 

Consequently, St' = 0 and the procedure cannot be continued. 
At this point we give two numerical examples to illustrate the failure of the 

algorithm when the matrix is in reduced form. In the first example the reduced 
form emerges at the second step. In the second example the original matrix is in 
reduced form. 

Example 1. The original matrix is 

4 1 0 o 0] 
1 4 0 -3 0 

(5) 2 0 5 1 1 
-2 2 0 4 0 

4 1 -1 6 2 

During the first step suppose we choose a = b = -2. In this case 

Si = 1, 
1/c = 1, 

X = (1, 1, -1, 2), 

y = (1, 0, 0, 0), 

and at the completion of the first step the matrix becomes 

4 -1 0 0 0 
-1 10 0 3 0 

0 8 5 7 1 
0 -14 0 -2 0 
0 60 1 182 j 

Before beginning the second step we notice that S2 0 0 and a24 F 0 but a23 = 0. 
Therefore, a permutation transformation P34 (see (2.2) in [1]) must be performed 
before we can carry out the second step. However, after the permutation the matrix 
is 

4 -1 0 0 0] 
- 1 10 30 01 

0 -14 -2 0 0 

0 8 715 1 
L 0 60 18 1 2 
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which is in reduced form. At this stage no matter what values we choose for a and 
b, Y will always have its last two components zero. Hence, a34 and a35 (and there- 
fore S3') always equal zero, and the procedure will break down at the third step. 

Example 2. The original matrix is 

2 1 0 -2 2 
1 3 11 2 3 

(6) [ )2 7 2 1 1 

O O O 4 1 
O O 01 1 3_ 

During the first step suppose we choose a = b =-2. Consequently, 

Si = 1, 

1/c = 1, 

X= (1, 1, 0, 0), 

Y= (1, , -1, 1). 

At the end of the first step the matrix becomes 

2 -1 0 0 0 
- 1 5 - 1 -4 10 

0 -1 0 -1 91 
O O 0 4 1 

_ O O 1 3_ 

In this matrix both S2 0 0 and a32 = a23 0 0. Therefore, we can carry out the 
second step. However, at this stage, regardless of the values we choose for a and 
b, X will always have its last two components zero. Therefore, we always have 
S3' = 0, and the procedure will break down at the third step. 

Second category. If at some step i, the matrix has the form 

0 ? 1 

I *I T 

I biT 

(7)~~~~~~ ------ ----- ------ 

_ fci+l An-i-1 

where Ai is a tridiagonal matrix of order i, where c,T and b T have the form 

(q, 0, 0, ... , 0) 

with q 0 0, and where 
Si+j = CTlsl 8i1=c+ibj?j = 0 

with neither of the (n - i - 1) dimensional vectors cj+i or bi+l vanishing, then it 
is quite clear that the procedure breaks down at the (i + 1)th step. 
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Example 3. The matrix 
4 2 0 0 0 

1 4 2 0 0 

(8) ! 0 1 1 2 0 

0 0 O2 1] 
L ? 0? !2 1 3 

is a matrix of this type. 

4. Remedies. 
(a) If the matrix is in the reduced form 

Ai Ai,n_i 

we can always replace the problem by the simpler problem of tridiagonalizing A and 
An_i . Of course this will change La Budde's statement [1, p. 437], " . . . the char- 
acteristic polynomial of the matrix A will not factor under this algorithm." 

(b) Upon discovering that we have applied the procedure to a matrix of the 
second category we must begin anew after some "preconditioning" of the matrix. 
For example, this preconditioning can be carried out by a Tkl(a) transformation 
(see (2.1) in [1]) or by a T1j(b) transformation or even by a series of Tkl(a) and 
Tlj(b) transformations, where in all cases 1 < j, k < n. However, we do not know 
beforehand how the matrix must be preconditioned in order that the tridiagonaliza- 
tion can be carried out to completion. Hence, the preconditioning is on a trial and 
error basis. 

To illustrate, consider (8) above. We precondition the matrix by a T31( 1) trans- 
formation, i.e., 

F1 0 0 0 0 4 2 0 0 O 1 0 0 0 [ 4 2 0 0 0 
O 1 0 0 0 1 4 2 0 0 0 1 0 0 0 -1 4 2 0 0 
1 0 1 0 0 O 1 1 2 0 -1 0 1 0 0 = 3 3 1 2 0. 
J i O 1 0 0 0 0 2 1 ' 1 0 1 0 O _ 0 2 1 

O 0 0 1 O 0 2 1 3 O O O O 1 -2 0 2 1 3 

If we choose a = -b = 2, then the transformation for the first step becomes 

F1 0 0 0 O 4 2 0 0 [ 1 0 0 0 0 
1 0 0 0 -1 4 2 0 0 0 1 0 0 0 

0 3 1 0 0 3 3 1 2 0 0 -3 1 0 0 
O 0 0 1 0 1 0 0 2 1 0 00 1 0 
O -2 0 0 1 -2 0 2 1 3 L0 2 0 0 1 

4 2 0 0 0 
-1 -2 2 0 0 

= -6 7 2 0. 

0 2 0 2 1 
0 4 -2 1 3_ 
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If we again choose a = - b = 2, the second transformation becomes 

[1 0 0 [ O 4 2 0 0 O F 1 0 00 O0 
O 1 0 0 0 -1 -2 2 00 0O 1 00 0 
1 0 1 0 0 0 -6 7 2 0 1 0 10 0 

O03 13 21 OO-13 1 0 
Lo o23o 1] L 0 4 -213] LO 0 _23 01 

4 2 0 O O 
-1 -2 2 0 0 

-6 39 2 0 
O O ~~9 - 1 

In the matrix on the right we see that 

S3 5 0, 

and we can carry out the third step. At the completion of the third step, the matrix 
will be in tridiagonal form. 
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A Note on La Budde's Algorithm 

By Beresford Parlett 

In the October 1963 issue of Mathematics of Computation, La Budde presented 
an algorithm for the reduction of an arbitrary real square matrix A to a similar 
tridiagonal matrix. We show here that when applied to Hessenberg matrices this 
procedure is identical to the more familiar reduction by elimination methods. 
Therefore the sarrme care is needed with the new technique as with elimination in 
treating the instabilities which can occur, see [1] and [3]. 

Let A be an unreduced lower Hessenberg matrix; i.e., aij = 0 if j > i + 1, 
ai, i+i# 0. La Budde's algorithm [2] consists of a sequence of major steps at the jth 
of which the current matrix A is transformed to 

A' = Vj(In_j + axyt)AVj(I-j + bxyt) 

using the notation of [2]. The equations (3.8)-(3.11) determining the vectors x, y 
and the scalar c' = xka5k reduce, in this case, to 

(3.8) c- = -(a + b)aj,j+1a,+?,Jab, 
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