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(3.9) x = c ai,l 

(3.10) yj+ =aj=,j 

(3.11l ) Xk = -ak]/a, Yk O, k=j + 2, ,n. 

N-Oow let D (q) be In_j except for the (1, 1) element which is q, let 
e= (1, 0, , 0), and imt = (0, nj+2,j , , mn) where nkj = akjlaj+?,j . Then 

In_- + axy t= D(-a/b)(Inj - met), 

In_- + bxyt = (In_j + mnet)D(-b/a). 

However Vj(In_-met)A V (In- + met) represents the jth step of the reduction of 
A to tridiagonal form by eliminiation, see [1] and [3]. The matrices D(-a/b) and 
D1(-b/a) represent the nultiplication of row j + 1 and the division of column 
j + 1 by -a/ b aind this leaves Sj +1 = aj+2.jla?l,j+2 invariant for all permissible 
a, b. In general a, b are meant to be chosen so that S'+1 # 0 and thus in this case 
they are nugatory and we may put a = b = 1. 

This shows that the penultimate paragraph of p. 436 in [2] is not correct. For 
Hessenberg matrices the algorithm can break down. 
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A Note on Projective Planes of Order Nine 

By E. T. Parker and R. B. Killgrove 

Veblen and Wedderburn [1] in 1907 constructed three non-Desarguesian projec- 
tive planes of order ninie, two duals of one another and one self-dual plane. These 
planes, together with the Desarguesian, constitute the only projective planes of 
order nine discovered to date; it has, however, not been proved that no more exist. 

hIall, Swift, and Killgrove [2], using the SWAC and card sorter, determined all 
permutation representations of planes of order nine, under the restriction that a 
set of nine parallel permutations forms the noncyclic group. No new planes were 
found; but, interestingly, more than one such coordinatization (i.e., nonisomorphic 
terniary rings with elemenitary abelian addition) was obtained for two known non- 
Desarguesian planes. Killgrove [3] carried out the same search for the cyclic group 
in place of the elementary abelian, obtaining no plane. 

Among the latin squares in the coordinatizations of planes in [2], exactly five 
are nonisomorphic, exclusive of the group. This determination was facilitated con- 
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siderably by counting numbers of lines consistent with every tabulated latin square 
-in the same sense that 2241 lines are consistent with the elementary abelian group 
(as described in [2]); a change of coordinate interpretation identifies these lines with 
transversals of the latin square. Then, knowing which classes of these latin squares 
were candidates for isomorphism, the mappings between latin squares were carried 
out by hand yielding five nonisomnorphic examples. 

0 3 6 2 7 4 1 8 5 0 2 1 6 8 7 3 5 4 
1 4 7 0 8 5 2 6 3 1 0 2 8 7 6 5 4 3 
2 5 8 1 6 3 0 7 4 2 1 0 7 6 8 4 3 5 
3 6 0 7 4 2 8 5 1 3 8 7 0 5 4 6 2 1 
4 7 1 8 5 0 6 3 2 4 7 6 5 0 3 2 1 8 

8 2 6 3 1 7 4 0 5 6 8 4 3 0 1 7 2 
6 0 3 4 2 7 5 1 8 6 5 4 3 2 1 0 8 7 
7 1 4 5 0 8 3 2 6 7 4 3 2 1 5 8 0 6 
8 2 5 3 1 6 4 0 7 8 3 5 1 4 2 7 6 0 

0 3 6 2 7 4 1 8 5 0 5 7 8 3 2 4 1 6 
1 8 3 5 6 2 0 7 4 1 7 3 6 2 4 5 0 8 
2 6 4 0 8 5 7 1 3 2 6 5 7 4 0 3 8 1 
3 0 8 7 4 1 2 5 6 3 8 1 4 0 6 2 7 5 
4 2 5 8 1 0 6 3 7 4 1 8 2 6 3 0 5 7 
5 1 7 6 2 3 8 4 0 5 0 6 3 8 1 7 4 2 
6 4 0 1 3 7 5 2 8 6 2 4 1 7 5 8 3 0 
7 5 2 4 0 8 3 6 1 7 3 0 5 1 8 6 2 4 
8 7 1 3 5 6 4 0 2 8 4 2 0 5 7 1 6 3 

0 6 3 4 1 7 8 5 2 
1 5 6 0 4 8 2 3 7 
2 3 7 1 5 6 0 4 8 
3 7 2 5 6 1 4 8 0 
4 8 0 3 7 2 5 6 1 

52 8 6 3 0 1 7 4 
6 1 5 8 0 4 7 2 3 
7 4 1 2 8 5 3 0 6 
8 0 4 7 2 3 6 1 5 

THE FIVE iNO.NISOMORPHic LATIN SQUARES (NOT THE GROUP) IN [2] 

For each of these five distinct latin squares, all extensions to planes were determ1ined; 
no new planes were discovered. Depending on choice of coordinate interpretation, 
there are two versions of the result of this note: (1) If L is a latin square in cc ternary 
ring (as in [2]) coordinatization with elementary abelian addition of an order 9 plane, 
then any such coordi'natization including L corresponds to a known plane. (2) If L 
is a latin square in a complete set of myutually orthogonal latin squares of order 9 in- 
cluding an elemnentary abelian group square, then any comnplete set of mutually orthogonal 
latin squares including L corresponds to a known plane. (It is not asserted here that 
any completion of any latin square occurring in either sense in a representation of a 
known plane cannot yield a new type of plane; hence the specific mention of ele- 
mentary abelian above.) 

In determining completions to planes of each of the five latin squares, the pro- 
cedures applied were as in [2]. Lines consistent with the square were generated by 
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computer. The automorphism group of each latin square was worked out by study- 
ing cycle structures; in all five cases the groups were not really small. Lines were put 
into equivalence classes under the automorphism group. Finally, judicious use of 
preferences helped considerably in trimming down the size of the search. Again as 
in [2], it seemed most efficient to classify initially all admissible sets of lines through 
one point of the affine plane. One feature was easier than in [2]: whenever a plane 
was completed, it could be recognized (by the results of [2]) as a known plane if one 
of the latin squares displayed was the group, it being unnecessary to determine 
which known plane it was. In some eight cases exactly this happened; one case was 
a bit more stubborn, requiring projective completion and recoordinatization to 
yield a group square. 

The computers used by the authors were respectively UNIVAC 1206 and SWAC. 
The effort was less a true collaboration than a division of labor arrangement. 

The authors express thanks to Professors Gordon Pall and Esther Seiden for 
helpful suggestions relevant to this project. 
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The First Power of 2 With 8 Consecutive Zeros 

By E. Karst and U. Karst 

The existence proof for a string of k zeros within 2' (in decimal notation) was 
recently given in [1]. Where those consecutive zeros occur the first time is another 
matter. We have written and run a fast program for the standard IBM 1620, dis- 
covering on January 1, 1964 the first string of 8 zeros, at n = 14007, after 1 hr. 18 
min. There were no string of 9 zeros of 2' up to n = 50000, which limit was reached 
after 13 hrs. 37 min. The first occurrences of 4, 5, 6, and 7 consecutive zeros, at 
n = 377, 1491, 1492, and 6801, respectively, as noted by Gruenberger [2], were 
checked and found correct. The string of 8 zeros in 214007 starts at the 729th decimal 
digit position, reading from right to left. 

Added in proof. On May 1, 1964, n- 60000 was reached. It takes now about one 
hour machine time to raise this upper bound by 2000. 
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