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(3.9) Tjp = c‘la2}+1,
(3.10) Yit1 = G5
(3.11) e = —aij/a, yr = 0, Ek=j+4+2,---,n
Now let D(q) be I,; except for the (1,1) element which is ¢, let
¢t =(1,0,---,0),and m' = (0, mjya,;, - , Ma;) where my; = ax;/a;41,; . Then
I+ axy' = D(—a/b)(I,—; — me"),

I_;+ bxy' = (In_; + me")D(—=b/a).

However V,(I,,—; —me')AV ;(I,_; + me") represents the jth step of the reduction of
4 to tridiagonal form by elimination, see [1] and [3]. The matrices D(—a/b) and
D(—b/a) represent the multiplication of row 7 4+ 1 and the division of column
7+ 1by —a/b and this leaves Sit1 = Q4274100 41,42 invariant for all permissible
a, b. In general a, b are meant to be chosen so that Sj;; # 0 and thus in this case
they are nugatory and we may put ¢ = b = 1.

This shows that the penultimate paragraph of p. 436 in [2] is not correct. For
Hessenberg matrices the algorithm can break down.
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A Note on Projective Planes of Order Nine

By E. T. Parker and R. B. Killgrove

Veblen and Wedderburn [1] in 1907 constructed three non-Desarguesian projec-
tive planes of order nine, two duals of one another and one self-dual plane. These
planes, together with the Desarguesian, constitute the only projective planes of
order nine discovered to date; it has, however, not been proved that no more exist.

Hall, Swift, and Killgrove [2], using the SWAC and card sorter, determined all
permutation representations of planes of order nine, under the restriction that a
set of nine parallel permutations forms the noncyeclic group. No new planes were
found; but, interestingly, more than one such coordinatization (ie., nonisomorphic
ternary rings with elementary abelian addition) was obtained for two known non-
Desarguesian planes. Killgrove [3] carried out the same search for the cyclic group
in place of the elementary abelian, obtaining no plane.

Among the latin squares in the coordinatizations of planes in [2], exactly five
are nonisomorphic, exclusive of the group. This determination was facilitated con-
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siderably by counting numbers of lines consistent with every tabulated latin square
—in the same sense that 2241 lines are consistent with the elementary abelian group
(as described in [2]); a change of coordinate interpretation identifies these lines with
transversals of the latin square. Then, knowing which classes of these latin squares
were candidates for isomorphism, the mappings between latin squares were carried
out by hand yielding five nonisomorphic examples.

036274185 021687 3 5 4
14708526 3 10287654 3
25816 307 4 2107 6 8 4 3 5
36007 42851 38705 46 21
4718506 3 2 476503 21 8
5826 31740 56 8 43017 2
6 03 427 5 1 8 6 5432108 7
714508 3 26 74321580 6
8 25316 407 8 3514276 0
0362741835 057 83241 6
1 8356207 4 173624508
26 40857 13 26 57 403 8 1
3087 41256 381406 275
4258106 37 41826305 7
517623840 506 38 17 4 2
6 401375 2 8 6 24175 8 30
752 408 3 6 1 7305186 2 4
8 71356 40 2 8 4205 7 1 6 3

06 341785 2

1 56048237

2 37 15604 8

372561480

480372561

5286 301 7 4

6 1 58 04 7 2 3

74128530 6

8 047 23615

THE Five NoxisoMorPHIC LATIN SQUARES (NoT THE GROUP) IN [2]

For each of these five distinct latin squares, all extensions to planes were determined,
no new planes were discovered. Depending on choice of coordinate interpretation,
there are two versions of the result of this note: (1) If L is a latin square in a ternary
ring (as in [2]) coordinatization with elementary abelian addition of an order 9 plane,
then any such coordinatization including L corresponds to a known plane. (2) If L
18 a latin square in a complete set of mutually orthogonal latin squares of order 9 in-
cluding an elementary abelian group square, then any complete set of mutually orthogonal
latin squares including L corresponds to a known plane. (It is not asserted here that
any completion of any latin square occurring in either sense in a representation of a
known plane cannot yield a new type of plane; hence the specific mention of ele-
mentary abelian above.)

In determining completions to planes of each of the five latin squares, the pro-
cedures applied were as in [2]. Lines consistent with the square were generated by
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computer. The automorphism group of each latin square was worked out by study-
ing cycle structures; in all five cases the groups were not really small. Lines were put
into equivalence classes under the automorphism group. Finally, judicious use of
preferences helped considerably in trimming down the size of the search. Again as
in [2], it seemed most efficient to classify initially all admissible sets of lines through
one point of the affine plane. One feature was easier than in [2]: whenever a plane
was completed, it could be recognized (by the results of [2]) as a known plane if one
of the latin squares displayed was the group, it being unnecessary to determine
which known plane it was. In some eight cases exactly this happened; one case was
a bit more stubborn, requiring projective completion and recoordinatization to
yield a group square.

The computers used by the authors were respectively UNIVAC 1206 and SWAC.
The effort was less a true collaboration than a division of labor arrangement.

The authors express thanks to Professors Gordon Pall and Esther Seiden for
helpful suggestions relevant to this project.
UNIVAC Division of Sperry Rand Corporation
St. Paul, Minnesota

San Diego State College
San Diego, California

1. O. VeBLEN & J. H. M. WEDDERBURN, ‘““Non-Desarguesian and non-Pascalian geome-
tries,”” Trans. Amer. Math. Soc., v. 8, 1907, p. 379-388.

2. MarssALL HaLn, JR., J. DEAN SwirT & RaymMonD KILLGROVE, ‘‘On projective planes of
order nine,” Math. Comp., v. 13,1959, p. 233-246.

3. Raymonp B. KILLGROVE, ‘A note on the nonexistence of certain projective planes of
order nine,”’ Math. Comp., v. 14, 1960, p. 70-71.

The First Power of 2 With 8 Consecutive Zeros

By E. Karst and U. Karst

The existence proof for a string of k£ zeros within 2" (in decimal notation) was
recently given in [1]. Where those consecutive zeros occur the first time is another
matter. We have written and run a fast program for the standard IBM 1620, dis-
covering on January 1, 1964 the first string of 8 zeros, at n = 14007, after 1 hr. 18
min. There were no string of 9 zeros of 2" up to n = 50000, which limit was reached
after 13 hrs. 37 min. The first occurrences of 4, 5, 6, and 7 consecutive zeros, at
n = 377, 1491, 1492, and 6801, respectively, as noted by Gruenberger [2], were
checked and found correct. The string of 8 zeros in 2" starts at the 729th decimal
digit position, reading from right to left.

Added in proof. On May 1, 1964, n = 60000 was reached. It takes now about one
hour machine time to raise this upper bound by 2000.
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