
On the Lo: Walsh Arrays for r(x) and Erfc(x) 

By John R. Rice 

1. Introduction. Let f(z) be a complex function and let S be a compact subset of 
the complex plane. We may consider the complex functions to be normed by an 
Lp norm defined either by the surface integral 

1l f(z) iP = [ If(z)I' dz P > 

or by the contour integral 

11 f(z)jjP = [L 1f(z)lp dz] p > . 

In either case it is known [2] that if f(z) is, say, continuous, then there exists a 
rational function 

n 

aiz Z as 
Rn,m(Z) = i=m 

Z bi z' 
i=O 

such that 
I Rn,m(z) - f(z) IIP 

is a minimum for all rational functions of degree (n, m). Such a rational function is 
said to be a best Lp approximation to f(x). One may form a two-dimensional array 
of these rational approximations analogous to the Pade table. One has one such an 
array for a given f(z) and for each combination of Lp norm and set S. Since best 
approximations are not always unique, there may be several entries for some (n, m). 

Roo(z) Rio(z) R20(z) 

Rol(z) Rll(z) R21(z) ... 

Ro2(z) R12(z) R22(z) ... 

We shall call this array the L1, Walsh array for f(z) on S. These arrays have been 
studied extensively by J. L. Walsh beginning around 1930 [4] and a large collection 
of his results on these arrays is contained in [2]. 

The first row of the Lp Walsh array contains polynomials and a very large body 
of literature exists concerning various properties of this sequence of polynomial 
approximations. One of the most interesting questions pertaining to these arrays is 
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the question of the rate of convergence. That is to say, how rapidly do the numbers 

En,m = || f(Z) - Rn,m(z) IIp 

tend to zero? For m = 0, there are many classical results on this question and, 
more recently, Walsh [3] has obtained some results on behavior of En,m for any 
fixed value of m or n. Very little is known for other paths in the array. 

Each rational function Rn,m(x) contains n + m + 1 parameters or coefficients. 
A question of considerable interest is: given p = n + rm + 1, determine n and m 
so that En,m is minimized. Clearly for each p there is at least one value of (n, rm) 
which satisfies this requirement. This value (or values) are denoted by E*,m and 
the corresponding values of (n, m) are denoted by (n*, rn*). The sequence 

{(n*,m*) In* + m* + 1 = p; p = 1,2, * } 

is said to be the path of maximal convergence. The question at the first of this para- 
graph may be rephrased to: What is the path of maximal convergence? 

In this paper we consider two L. Walsh arrays. The first is that for the com- 
plementary error function Erfc(x) and the interval [0, oo]. The second is for the 
Gamma function aiid the interval [2, 3]. The object is to determine an initial seg- 
ment of the path of maximal convergence for each of these arrays. The determina- 
tion is made by actual computation of entries of the Walsh arrays. 

The entries themselves are not presented here. They will appear in a large 
collection of approximations to be published in book form. 

Thus we will actually consider here the arrays of En,m associated with the Walsh 
arrays. There is considerable contrast between the two arrays. The array for Erfc(x) 
is very regular and the path of maximal convergence is a smooth curve. One can, 
with considerable confidence, extrapolate the path of maximal convergence ob- 
tained to much larger values of p. On the other hand the L. Walsh array for 17(x) is 
highly irregular, as is the initial segment of the path of maximal convergence. 
The explanation of this irregularity will no doubt require a careful study of the 
deeper properties of this function. In spite of this irregularity, there is rather good 
agreement between the results presented here and those obtained by Walsh on the 
asymptotic rate of convergence to zero of En,m for m fixed. 

2. The Complementary Error Function. The error function is defined here by 

Erf(x) = - e- O? < x < oo. 

Two other forms are commonly used, namely Erf(x/V/2) and 

1[1 + sgn(x)Erf(I x I/I2)]. 

The complementary error function is 

Erfc(x) = 1 - Erf(x). 

As x become large, Erfc (x) tends to zero very rapidly. We have, for large x, 

2xe_X2 e_x2 

V (2X2 + 1) < Erfc(x) < \/-. 
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Let Rn,m(x) deitote the (n, m) entry in the L. Walsh array for the interval 
[0, o ]. One does not normally consider the Walsh array for infinite intervals, how- 
ever, in this case, the array is well defined for n ? rn. One would normally be inter- 
ested in this portion of the array. Let 

n,= -100 log Erfc(x) - Rn,m(x) | 

A portion of the values of En,m are given in Fig. 1(a). The largest value of x for 
which 11 Erfc(x) - Rn,r,m(x) K1. is actually assumed is x = 10.4 for R3,5 . Fig. 1(b) 
shows the initial segment of the path of maximal convergence along with the regular 
distribution of the sign of Rn,m(0) - Erfc(0). The high degree of smoothness and 
regularity of the array is illustrated in Fig. 2, where the values of En,m are plotted 
for columns of the array. The light lines indicate probable values which have not 
been computed. The dotted lines are to suggest the smoothness of the "surface" 
of the L. Walsh array for this function. One may ascertain that En,m tends to zero 
along the path of maximal degree of convergence at the nearly constant rate. Let 
Rp*(x) denote the best approximation to Erfc(x) with p parameters, then 

Ij Erfc(x) - Rp*(x) Io Ijj -- 1.2(.34) P. 

3. The Gamma Function. The Gamma function is defined by 

F(X) tx-1e-t dt. 

\ n \ n 
m 0 1 2 3 4 m\ 0 1 2 3 4 

0 0 

1 85 1 + 

2 133 170 2 - _ 

3 176 226 3 + + 

4 216 275 309 4 4 

5 255 321 364 390 5 + + + + 

6 292 365 414 447 6 - _ \ _ 

7 408 462 501 7 + + 

8 449 508 5 52 584 8 _ _ \ _ 

9 489 552 601 9 + + + 

10 597 648 689 10 _ \ _ 

11 
693 

11 

(a) (b) 

FIG. 1. (a) The values of En,m for the initial segment of the L. Walsh array of Erfc(x) on 
[o, oo]. (b) The signs of Rnnm(0) - Erfc(O) and the initial segment of the path of maximal 
convergence. 
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( ) n,m( ) I,0 A2 

-n 0 

12468 01 

3 nc.n 

IErfc(x) - R (x)II 
n,m co- 

10- 

10 
-7 ~ ~ ~ ~ ~ ~ ~ ~ ~ 7 

2 4 6 8 10 12 

Denominator Degree m 

FIG. 2. The surface of the L. Walsh array for Erfc(x) near the path of maximal conver- 
gence. 

A most notable property of this function is that for an integer n, 

n! = F(n + 1). 

The Gamina function increases rapidly with positive x, growing as +/x e-xX. It 
has a simple pole at the origin and at each negative integer. This function is difficult 
to evaluate for small x. Apparently, the only feasible method is to use Stirling's 
formula (or refinements) for large values of x and then use the relation 

1(x) r(x + 1) 
x 

to reduce the argument to the desired value. 
Again let Rn,m(x) denote the (n, m) entry in the L. Walsh array for the interval 

[2, 3] and let 

En,m = -100 log 17IP(x) - Rn,m(x) 1oo. 

A selected number of values of En,m are given in Fig. 3. It is not immediately 
obvious from this table that the "surface" of the Walsh array is highly irregular. 
This fact becomes more apparent in Fig. 4. There the initial segment of the path 
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of maximal convergence is shown along with the sign of Rn.(xo) where xo is the 
leftmost extremal point of the error curve Rn, m(x) - r (x). The value of xo is not 
always 2. Since not all of the entries in the Walsh array have been computed, it is 
not certain that the path illustrated is the actual path of maximal convergence. It 

\\n 
m 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

0 7 11 21 30 42 53 67 76 98 99 111 140 

1 21 22 40 44 58 65 78 85 99 xx 122 133 149 162 177 

2 22 xx 44 49 67 77 

3 32 43 59 70 86 97 115 123 144 164 173 187 212 

4 53 55 77 82 100 108 

5 55 xx 83 89 110 121 

6 60 97 127 158 169 194 198 

7 84 12 3 144 171 198 

8 196 214 245 

9 136 201 235 

10 155 

11 166 

12 178 212 

FIG. 3. Selected values of E' ,m for the L,o Walsh array of r(x) on [2, 3]. The entries xx indi- 
cate entries which require special care in order to be computed. 

\n 
m 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

O t+ + ~ + - + _ _ + 

1 + + + xx + + + + - 

2 :- + - + 

3 - + - + + - +" O+ + + + + 

4 - ++ + + 

5 + xx + + -. -- - 

6 + + +'' - 

7 + - 

8 + - 

9- 

10 _ 

1i + 

12 + _ 

FIG. 4. The initial segment of the path of maximal convergence along with the sign of 
Rnm(x) - r(x) at the leftmost extremal point of the error curve. 
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is believed that the path shown is correct. The dotted portion of the path corre- 
sponds to situations where two entries of the array are equally good approximations. 

One might think that entries in Walsh array near the path of maximal degree 
of convergence would be nearly as good approximations as those on the path. That 
this is not so is seen from an examination of Fig. 5. In this figure the values of En,m 
are plotted with values corresponding to a fixed number of parameters connected 
by lines. Missing values of Et ,m have been estimated to produce a more complete 
figure. The irregularity of the "surface" of the Walsh array is very apparent in this 
figure. 

0 

p 2 

-p=3 

p =4 

40 p 5 

p=6 

p =7 

80 

C _v/-\,P =9p = 10 

p~~~p=1 

1204 p=12 

En,m \ < p = 13 

\/~~~~~~~~ 1 

200 

p 17 

240 - 

. I I , I I I I I i I I I 
0 2 4 6 8 10 12 14 16 

Numerator Degree n 

FIG. 5. The values of En$m joined by lines of p = n + m + 1 = constant. 
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The next two figures show this surface from two other points of view, namely, 
for lines with constant n and for lines with constant m. In these figures, only the 
known values of E' , are shown as points connected by solid lines. Conjectured 
values are nat. shown, though dotted lines are used to extrapolate and interpolate 
some of the curves in what is hoped to be a reasonable manner. 

In [3] Walsh has obtained estimates for the degree of convergence of Rn.,, to a 
given function as n tends to infinity with m fixed. In view of the irregular behavior 
of the Loo Walsh array for P (x), there is surprisingly good agreement between these 

20 

40 M = , 

60 M = 

t m - 1 1 xm 9a 

22 \ 

80 

\ \ 3 

40 n,m ~~~~ m 7 

m 2 8 1 2 4 1 

160 m1 

mN11 \m 9 

180 m 12 

200 

m8 

220 m 12 

240 

0 2 4 6 8 10 12 14 16 

Numerator Degree n 

FIG. 6. A view of the surface of the L. Walsh array for r(x) on [2, 3]. The lines are for 
constant degree of the denominator. 
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theoretical values and those obtained from Figs. 6 and 7. Walsh's theory states that 

Lim [II IP(x) - 1n 1X I 0 
Limo 

[11 r(x)-R,m( 
=2m + 5 + 2V/m2 + 5m + 6 4m + 10 

as n tends to infinity. This result and Fig. 6 are compared in Table 1. 
Walsh's results also show that the poles of Rn,m(X) tend (as n tends to infinity 

with m fixed) to those m poles of F(x) closest to the interval [2, 3]. This tendency 
is illustrated in Fig. 8 for m = 1 and m = 3. 

20 

40 

n 0 

60 

80n= 
n=- 

100 4 

\ \\ \ 

\n 

1200 \ \ ~ ' 

240 n = 16 

0 2 4 6 8 10 12 14 

Denom inato r Deg ree m 

FIG. 7. A view of the surface of the Loo Walsh array for r(x) on [2, 3]. The lines are for 
constant degree of the numerator. 
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TABLE 1 

Comparison of the Observed and Theoretical Values of [lIr(x)-IRP (x) ) --lln 

m 0 1 2 3 4 5 6 9 

Theory 10 14 18 22 26 30 34 46 
MiVeasured 11.5 14 17 21 24.5 29.5 33 47 

m=1 

-6 -4 -2 0 2 3 4 6 8 10 12 

0 7 

2- 
3-0 
4-0 

5-0 
6- 

n 7- 
8 -(-117) 

10- 0 

11- 
f2_ - 
12- 0 13 - 
14 - 

m 3 
-6 -4 -2 -1 0 2 3 4 6 8 10 12 

0 - 1 (.8) 
1- 0 ~~~~~~~~~~~~~~~t(.9i) 

2- 
3(1.0i) 

4 - (1.14i) 
5- 8(. 18i) 

l 6 - (1.24i) 
7 t ~~~~~~~~~~~~~~~~~(1.27i) 

8- s(1.3i) 

10 - ; ~~~~~~~~~~~~~~~~~~~~~(1.231) 
11 - s (.991) 

14 - *(10) 

16 - ~ 
FIG. 8. The location of the poles of Rn,l(x) and R., ,(x). The real parts of the complex poles 

are marked by a vertical bar and the imaginary parts are in parentheses. 

The irregular nature of the Walsh array for r(x) is somewhat of a surprise. A 
foremost open question in this area is the explanation of this irregularity. It seems 
reasonable that the aberrations in the array are due to the movement of the poles 
of Rnnm(X). Note, for example, that the aberration near R8,o(x) and R9,1(x) corre- 
sponds to change of the pole from the right of the interval of [2, 3] to the left of it. 
The pole of R9,1(x) is conjectured to lie very close to 2.0 and its presence there has 
so far prevented the calculation of Rg,1(x). 
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The convergence of the poles of R m(x) (m fixed) to those of r(x) appears to 
be somewhat slow. This is probably due to the strength of the singularity of r(x) 
at infinity. Apparently, low powers of x are not sufficient to satisfactorily approxi- 
mate this singularity, so that poles of R, m(x) are needed on the right of the interval 
[2, 3] until relatively high powers of x are available. 
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