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By Wyman Fair 

Introduction. In this paper we employ the ir-method, see [1], [2] and [3], to 
obtain the main diagonal Pade approximations to the solution of the Ricatti dif- 
ferential equation whose coefficients are rational. The results are applicable to 
first order linear differential equations. This approach is quite different than the 
conventional utilization of the linear fractional transformation, see [4] and [5], 
to develop a continued fraction representation of the solution of the Ricatti equa- 
tion. There are certain advantages in each approach. 

Khovanskii [4] has studied the Ricatti equation whose coefficients are at most 
quadratics in the independent variable. In certain instances his approximations 
are of the Pade type. In this event, our results are much more general. Merkes and 
Scott [5] develop continued fraction solutions to a much wider class of Ricatti 
equations thati are treated here. However, no particular attention is devoted to the 
Pade approximations and the results are not applicable to first order linear dif- 
ferential equations. 

In Section I we develop recurrence relations which deternmine the main diagonal 
Pade approximations to the Ricatti equation with polynomial coefficients. Section 
II entails a discussion of convergence of the approximations developed in Section 
I. In Section III we give some important examples and applications of the theory. 

I. Pade Approximation to the Solution of the Ricatti Equation. Here we develop 
a method of obtaining recursively the main diagonal Pade approximants to the solu- 
tion of 

Py + Qy + Ry2 + S = 0, yo = y(O), 
(1.1) p q r s 

P= ZPkX, Q== Eqkx, R== Zrkx, and S= ZSkX. 
k=O k=O k=O k=O 

We assume that (1.1) has a series solution of the form 
00 

(1.2) y= Zckx, C = yo, 
k=O 

and further that 

Co Cl ... cm 

Ci C2 ... Cm+1 

(1-3) dGm= . i0C mC0+i 2C 

Cm CM+1 
... C2m 
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In this case y possesses a continued fraction expansion [6] of the form 

al X 
Y =Yo- 2 

1+ lix + a2X 

(1.4) 1 + f2X +1 3X 
+ 02 X + 

f33X ? 

and the nth approximant of (1.4) is the nth order main diagonal Pade approximation 
to y. 

In keeping with the r-method philosophy, we append a term to the right-hand 
side of (1.1) and consider the related equation 

PYn + Qy. + RUn Y. S = B 2 = B 2 Tn,k X 
Bn - B k=O 

An 
n ~~~~~k (1.5) m = max {p - 1, q, r, s}, yn -- An - = an,kX, 

Bn k=O 

and Ao Y 
Bn = bn,k xk and yo --?B-i? . 

k=O Bo 

That yn is the main diagonal Pad6 approximation to y can be shown by using 
analysis similar to that of Wall [6, p. 412-413]. Since Yn is the main diagonal Pade 
approximation to y, we have from the theory of continued fractions, An and Bn 
both satisfy 

(1.6) An = PnAn-1 + anx2An-2, Pn = 1 + OnX- 

For convenience let 

axk,j = akak-1 .. ai 

(1.7) ak,k = ak ak-1,k = 1 and 

a!k,j = O for k < j-1. 

Then 

An = BnAn_1-AnB_ = -BI n = (-X) nIa,,x2x and 
(1.8) 

At = a1x. 

After multiplying both sides of (1.5) by Bn2 and repeatedly applying (1.6) and (1.8) 
to the resulting equation, we get 

Pn2Tn_1 + an 2x4Tn-2 + an/An-1xP 

n-3 

+ 2an Pn 
2 

Pn-1 Tn-2 + Z an-1,n-k Pn-k-1 X Tn-k-2 + an,2 Pn XnU = Tn 7 { ~~~k=1 
m+1 

(1.10) U = (AoB, + A1Bo)Q + 2AoA4R + 2B1S = E UkXk. 
k=O 
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Equating coefficients of powers of x in (1.9) we get the systenm of equations which 
determine directly the values a, ,,3 and -r,k . We have 

( 1. 1 ) a = -rn-l,o n{(-) 1n,1 po + an-1,2 UO+ 2 Z an-1,jrj-2,o 

(2 3n= -{rn-1,0 + (-) 'an,pO}P {Tfn-1,1 + ( n)an,1p, + an,2U1 

(1.12)n 
+ 2 C aEn,j[rj-2,1 + 3j-1-rj-2,0]} 

j=3 

and 

Tn,k -rn-1,k+2 + 23n fn-l,k+l + an rn-2,k + On Tn-l,k 

+ an {(-) nan-1,1pk+2 + an-1,2Uk+2 + a(n-1,23nUk?+1 

(1.13) n 

+ 2 ? ahn-l,j[Tj-2,k+2 + (On + O3l-1)7j-2,k+1 + f3n13j-1Tj-2,kl 
j=3 

k = (0, 1, 2, . , ), n = (2, 3, 4, *). 

The starting values for computation are 

Ao = yo, Bo- 1, 
2 

Al = yo + a1,lx, B1 = 1 + b1l1x, a1,1 = Ci C2Yo and b1i1 =- 
Cl ~~~~~~~Ci 

al = (yobij1 - a1,), 01 = bij; 

TO,k = yO qk + yO rk + Sk 

7Tl,k = - alpk+2 + yOqk+2 + yo rk+2 + Sk+2 + (a1,1 + b1,lyo)qk+i 

+ 
2yoa1,jrk+j 

+ 2b1,1sk+l + 
ai,jbi,1qk 

+ a ,2rk + b ,2sk 

(k =0,1,2, * ,m); 

and from (1.10) the values of Uk are 

+ 2 
Uk = 2yoqk + 2yo rk + 25k + (a1,1 + yobj,1)qk-1 + 2yoal,1rk-1 + 2b1,18k-1 

(kc=z0,1,2 .,m+1). 

Theoretically, we can eliminate the hn,k'S from the equations (1.11), (1.12) and 
(1.13) and obtain an and on in terms of their previous values. In general, it does not 
seem possible to obtain closed form expressions for an and O3n. In Section III, 
however, we give some important examples for which this can be done. 

It should be mentioned that this method of obtaining Pad6 approximations to 
functions can be applied to first order linear differential equations with polynomial 
coefficients by setting R = 0 in (1.5). This is pertinent since many important trans- 
cendental functions can be defined by an equation of this type, see [1] and [7]. 
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II. Convergence of the Pade Approximation. Let 

(2.1) Y(x) = lim yn(x), 
n-*oo 

where yn(x) is defined in (1.5). The convergence of the continued fraction (1.4) 
insures the convergence of Y(x). The criteria given here for the convergence of 
(1.4) follow from Wall [6, p. 42, 109 and 110]. 

Case 1. 

(2.2) lim an= 0. 
n-oo 

The continued fraction (1.4) converges for x in any finite closed region which omits 
poles of (1.4). 

Case 2. 

(2.3) lim an # 0. 
n-oo 

We assume that the an and n are real and that (1.4) is eventually positive definite, 
i.e., there is an N such that for n ? N, an< 0. The continued fraction (1.4) con- 
verges, except at isolated poles, for Im (x) 0 0 if either 

00 

(2.4) E ak -1/2 c 
k=N 

or 

00 

(2.5) E I Ok+1 I I akak+ | / =2 
k=N 

Further, if 

(2.6) limOn o 0 and limla < <! 
n-00 n- 0 jn = 4 

then (1.4) converges in a neighborhood of the origin and any finite closed domain 
which omits poles of (1.4) and which excludes the negative real axis. 

It should be noted that if (1.4) converges and xf'n, j 1, 2, , n are the 
(n0) zeros of Bn(X) then limn- 00 xi = xj where xj is a pole of y(x). This offers a con- 

structive method of obtaining the poles (and zeros) of y(x). See the third example 
in Section III. 

III. Examples and Applications. Here we consider some important special cases 
of (1.1) and, for a number of these, deduce closed form expressions for an0 and O3n 
defined in (1.6). 

1. Let u = b(a; b; x) where b(a; b; x) is the confluent hypergeometric func- 
tion, see [8, p. 248]. Then y = u'/u satisfies the Ricatti equation 

(3.1) xy' + (b-x)y + xy2 - a = 0, yo = y(O) = 
a 
b 

Following the development in Section I, we find: 
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Ao = yo , Bo = 1, 

A1 = yo + al,lx, B1 = 1 + bl,lx, 

a(a + 1) b 2a-b 

a b(b+ 1)(b+ 2) ij1 b(b+ 2) 

(3.2) a, 
a (a -b) 

0 i 
(3.2) - = b2(b + 1)' 1 = 

'rn, 0 = 0, n = On 1) 2, ** 

a(a + 1)(a - b)(a - b -1) ro,i = (b + 1)a, T1~,I = b2(b + 1)2(b + 2)2 

uo=O, U1 =(b+2)al, u2=bail i, 

and"the equations defining an , (n and rn, , are 

n 

n= Tn-1,1 + / n-1,2 U1 + 2Z 5 nj1iTi-21} 

j=3 (33)On= n, U+ 2 Z7 n j1lj-21 2n11 n2U+25,a,r-, 

Tn,1 = an,,T,n-2,1 13On2 n-1,1 + an,,2/3nU2 + 2035,, an ,j fj3 ~-rj-21 1 

We can eliminate rn,l from the equations (3.3) and show by mathematical induction 
that 

(a + n)(b - a + n) 
= (b + 2n - 1)(b + 2n)2(b + 2n + 1)' 

(3.4) 
2a - b 

= (b + 2n - 2)(b + 2n) 

and the approximants converge to a function which is convergent except possibly 
at isolated poles. 

2. Let u J,(z) where J,(z) is the Bessel function of the first kind. Set y = 
zu'/u, and x Z2, then y(x) satisfies 

(3.5) 2xy' + Y2 + X-V2 = 0, yo = y(O)=V. 

The development is similar to the preceding examples and we list the results: 

1 _ _ _ _ _ _ _ _ 

(3.6) a = 21+ ) and (1 = -1 

After eliminating f,ln from the equations defining a,n and On3, we can show by 
mathematical induction that 

a,,=- and 
n 16(2n-3 + v)(2n-2 +z V)2(2n-1 +v) 

(3n Y(7-1 
On 2(2n + v) (2n - 2 + ) 
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Again we have convergence in any finite closed domain which excludes the poles 
of Y(x). Since I(z) = e-iP7/2j'(zei712) where I(z) is the modified Bessel function 
of the first kind, we also have the Padd approximations to zI,'(z)/I,(z). 

3. Let u = K7( l/x) where K,(z) is the Bessel function of the second kind. Then 
y = u'(x )/u(x) satisfies the equation 
(3.8) -x2 y + Xy + y2 - (1 + v2x2) = 0, yo y(O) -1. 

We have 

Ao= -1, Bo= 1 

A1 = -1 + ai,jx, B1 = 1 + b1,1x, 
2 b1, 1 2 

a,,,= V2 - bi, $I 4 _VI 

a-1 = - 

(3.9) ai 1314 

T"'o = 0, n = 1, 2, * * 

70,1 = -1 Ti,i = -(1 + V2)/13i 

70,2 = 2V - - 2 

TO', 2 1,2 = O 

U= 0, Ul= U2= -1, and u3= 2v2f1. 

The equations defining an, , and n,j are 

^n= -fn-11l/{-an-1,2 + 2 E an, Ti-2,1} X 

dn= - 
{rn 

f1,2 
- an,2[( - )na + 1] + 2 E 

an,j[rJ-2,2 + 1j-i Tf-2,1]} 
v 

(3.10) Tn,i = 2/-3nTwn-1,2 + aCn Th-2,1 + fl Tn-1,1 + atn,2U3 - ?an,2 fn 

n 

+ 2 Z T n,[1G3n + -a j-1)r2i-2,2 + a n1Tj-1Tj-2,1] 
j=3 

On2=?nt-, n Tn-1,2 - a tn,21 
- )al 1 + 2 3nE, aXn,j[ jTj-2,2 Oj1'j21 

We can combine the expressions in (3.10) to get 

(3.11) Tn = 12a-2 + Oin . - n + 1) - an2 - an + 3) 

and 

(3.12) t3n =fn 2- 1n-1 + -13n-l + 13n-22 - n + 2-2}1=, 

For v = 0 these reduce to 
(3.13) 

On=- 4 21 

2 2 ~ 4 1 

and 

(3.14) n n = n- 

so that for v = 0 we have convergence for x not on the negative real axis, and in a 
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neighborhood of the origin. Convergence for v arbitrary has not yet been shown. 
However, we do have 

Kv' (z) v z 

(3.15) Kv(z) -Z (zK-_(z)) 
(V- 1) - Kviz 

so that if we have a convergent expression for a given v, we have a convergent 
expansion for v + 1, although the latter is not the Pade. 

For an important application of the Pade approximations to Kv'(x)/Kv(x), 
we consider the inversion of the Laplace integral 

(3.16) e1p d ,(p) p 2ri -iopKA'p)etd, 
which is discussed in [9] and [10] in connection with the problem of supersonic flow 
past quasi-cylindrical bodies of almost circular cross section. 

In the latter reference an approximationi for I is achieved by using rational 
approximations for K,(p). These rational approximations are not of the Pade 
type. 

One method of evaluating I in (3.16) is by applying the calculus of residues 
which requires a knowledge of the zeros of K,'(x). Here the Pad6 approximations to 
Kv'(x)/Kv(x) can be used to great advantage. A table is included which compares 
the approximate zeros obtained in this way to the zeros of Kv'(x) given in [9]. 

TABLES OF ZEROS OF Kv' (X) AND An(l/x) 

Approximate Zeros 
True Zeros 

n=6 n=8 n=10 

v = 1 

-0.64355 4 iO.50118 -0.62688 i iO.50755 -0.64082 ? iO.49114 -0.64886 i iO.49965 

v = 2 

-0.83455 d il.43444 -0.83449 i il.43502 -0.83445 ? il.43437 -0.83457 i il.43442 

v= 6 

-1.23832 i i5.23662 -1.23839 i i5.23631 -1.23832 ?L i5.23662 -1.23832 i i5.23661 
-3.10823 i i3.10944 -3.11913 i i3.18820 -3.10747 ? i3.10875 -3.10798 i i3.10908 
-3.83945 i il.31040 -3.26840 i il.33025 -3.88014 i il.26068 -3.87739 i il.29243 

= 10 

-1.47973 i i9.10691 -1.50168 A i9.10913 -1.47946 ? i9.10680 -1.47975 ? i9.10692 
-4.01755 ? i6.76252 -3.09425 ? i7.13132 -4.17663 ?L i6.86179 -4.01704 i i6.76220 
-5.34531 i i4.85738 -2.13322 i i3.14663 -4.26387 ? i5.39552 -5.38690 i i4.84802 
-6.13751 i i3.05917 -3.70852 i il.99284 -6.01367 i i3.38991 
-6.54610 i il.30462 -5.75923 i il.24091 

4. We now apply the results of Section I to a well-known first order linear dif- 
ferential equation which was treated from different points of view by Luke [1] 
and Laguerre [7], and obtain some results found in these papers. 
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Let y = 2F1(l, b + 1; c + 1; x). Here, 2F,(a, b; c; x) is the hypergeometric 
function, see [8, Chapter 2]. The equation satisfied by y is 

(3.17) x(l-x)y' + [c- (b + l)x]y-c = 0, yo = y(O) - 1. 

b + I b + 2 b+l _ b+2= 
c+ ' c+ 2' 

and after eliminating Thi from the equations defining an anld 3n we can show by in- 
duction that 

(n- 1)(n + c - b - 2)(n + c - 1)(n + b) and 

n3.18 
(2n + c-3)(2n + c-2)2(2n + c-1) 

(8 2n(n+c-1)+bc 
(2n + c)(2n -2 + c) 

Convergence is obtained for x not on the negative real axis and also in a neighbor- 
hood of the origin. 
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