
TECHNICAL NOTES AND SHORT PAPERS 

On a Problem in Elementary Number Theory 
and a Combinatorial Problem 

By P. Erdos 

In a recent paper [1] I considered among others the following little problem: 
Denote by ft(n) the smallest integer 1 so that if 

1 ? a, < a2 < < a, _ n, l=ft(n), 

is an arbitrary sequence of integers one can always find t a's ai1, , ait which 
have pairwise the same greatest common divisor. I proved in [1] that for fixed t 

(1) ~~~~~ft(n) <n 
exp [(log n)1/2]-e 

Recently, I observed that using a combinatorial theorem due to Rado and my- 
self (1) can be considerably improved and it might, in fact, be possible to obtain 
the correct order of magnitude for ft(n). The combinatorial theorem in question 
states as follows [2]: Let g(k, t) be the smallest integer so that if A1 , ***, As, 
s = g (k, t), are sets each having k or fewer elements then there are always t A's 

Ail, , Ai, which have pairwise the same intersection. We have 

(2) g(k, t) < k!(t - 1)k+1. 

We conjectured that (2) can be improved to (cl ,c2, are absolute constants) 

(3) g(k, t) < Clk(t - 1)k+l. 

The conjectured (3) would have applications to several questions in number theory. 
It is not difficult to show that 

lim g(k, t)1Ik 
k=oo 

exists, but I cannot show that it is finite. 
Now we prove the following: 
THEOREM. For every t and e > 0 there is an nO so that for all n > no(t, e), 

og n/log log n 314+e 

(4) 2c~o < fh(n) 
< n' 

First we prove the upper bound in (4). 
Let 1 ? a, < a2 < *-- < ai < n, 1 = [n314+e] be an arbitrary sequence of 

integers. We split the a's into two classes. In the first class are the a's which have at 
least 

[4 log log niu 
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distinct prime factors. Denote by wi, w2, ... the squarefree integers not exceeding 
n which have exactly u prime factors. Clearly every number of the first class is a 
multiple of some wi, hence the number of integers of the first class is by a simple 
calculation at most 

n < n (1 u! < n(log logn + c2)u/u! 
Wi pi?l \Pi/ 

<n(e(log logn + c2)) u/u! < 1n n34+e 

for every e if n is sufficiently large. 
Hence the number of integers of the second class is greater than 2 n314+e Con- 

sider the (unique) factorization 

(5) ai = AiBi, (Ai, B%) = 1, 

where each prime factor of Ai occurs with an exponent greater than one and Bi 
is squarefree. It is well known [3] and easy to prove that the number of integers 
m _ n all of whose prime factors occur with an exponent > 1 is less than C3n112. 

Hence there are at least (1/2c3)nlI4+?E integers ai, with the same Ai 

(6) aij = A ij Bs, 1 _j i r, r > - n1/4+ Aii = A. 
2c3 

Clearly the number of prime factors of the squarefree number B, is less than u. 
A simple computation gives, for n > no(c, t), 

1 1/4+e > u!(t - 1)f+ ( 1 log n 

Hence from (2) there are at least t B's and hence by (6) at least t a's which have 
pairwise the same common factor, which proves the upper bound in (4). 

To prove the lower bound in (4) put 

k 0 logn 1 
k=3 log log nj 

and denote by pi(J), 1 < i < 3, 1 < j < k, the first 3k primes. Put 

bi = Pi p2 b2j' = pi P3 , bjNi = p2(j) P3 

The a's are the 3k integers of the form 
k 

][I bi(j), i = 1, 2, or 3. 
j=1 

A simple computation using the prime number theorem (or a inore elementary 
result) shows that all the a's are less than n. Further, obviously no three of them 
have pairwise the same greatest common divisor, also ft(n) _ f3(n), thus the 
lower bound in (4) is proved and the proof of our theorem is complete. 

The inequality (3) would easily imply 

(7) f t(n) < (,,/)log n/log log n. 
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The proof of (7) (using the unproved conjecture (3)) would be similar to the 
proof of our theorem. Instead of the decomposition (5) we would have to put a, = 
CiD, where all prime factors of Ci are less than log n and all prime factors of Di are 
> log n. We suppress the details. 

Very likely 

(8) lim log (ft(n))* log log n 
n=cc log n 

exists and perhaps it might be possible to determine its value, but it will probably 
not be possible to express ft(n) by a simple function of n and t (even for t = 3). 

If t is large compared to n our method used in the proof of our theorem no longer 
gives a good estimation, but it is not difficult to prove by a different method the 
following result. Let 1 ? a, < a2 < . . . < a, ? n, 1 = Cn be given, then there are 
always nEc integers ai1, *- , air which have pairwise the same common factor 
(Ec depends only on C), but we do not investigate this question here any further. 

I have not been able to decide if to every a > 0 there is an no (a) so that if 
n > no (a) and 

1 ? a, < a2 < *-- < a, ?< n, I> an, 

is any sequence of integers, then there always are three a's which have pairwise the 
same least common multiple. This is certainly true (and trivial) if a is close enough 
to 1; perhaps the whole question is trivial and I overlooked an obvious approach. 
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On Maximal Gaps between Successive Primes 

By Daniel Shanks 

In personal correspondence Paul A. Carlson asked the author if he could give a 
rough "ball-park" estinmate of where one would first find a run of a million or more 
consecutive composite integers. For notation let us define p(g) to be the first prime 
that follows a gap of g or more consecutive composites. Thus p(l) = 5, p(2) = 
p(3) )-11, p(4) = p(5) = 29, p (6) = p(7) = 97, etc. We seek to estimate p(106). 

Conversely, by g(n) we mean the largest gap that occurs below any prime p _ n. 
We may call these values of g maximal gaps. 

That p(g) is finite for every g is well known. The famous proof by Lucas [1] 
merely notes that the g consecutive integers: 

(g + 1)! + 2, (g + 1)! + 3, (g + 1)! + 4, *.* , (g 1)! + g + 1 
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