
ON THE EVALUATION OF CERTAIN DETERMINANTS 653 

1. J. J. SYLVESTER, "Sur les puissances et les racines de substitutions lindaires," C. R. 
Acad. Sci. Paris, v. 94, 1882, P. 55-59. 

2. A. BUCHHEIM, "An extension of a theorem of Professor Sylvester's relating to matrices," 
Philos. Mag., v. 22, 1886, p. 173-174. 

3. L. M. MILNE-THOMSON, The Calculus of Finite Differences, Macmillan, London, 1960. 

On the Evaluation of Certain Determinants 

By Jean L. Lavoie 

1. Abstract. Using the properties of the generalized Hilbert matrix and familiar 
results from the theory of hypergeometric series, we evaluate the determinants of 
certain matrices whose general terms are known explicitly. In certain cases it is 
even possible to find the analytic expression for the general terms of the inverses. 

2. Introduction. In this paper the matrices used are always assumed to be 
n-square and i and j to be positive integers such that 1 ? i, j _ n. 

The following elementary properties of determinants will be used: 
(I) If K multiplies all the elements in a row (column) of a determinant it multi- 

plies the value of the determinant; 
(II) the determinant of a triangular matrix is equal to the product of the n 

terms along the main diagonal; 
(III) if A and B are two matrices then det(AB) = det(A) det(B). 
We shall also need Gauss's theorem [1, Theorem 18, p. 49] 

(1) 2F1 (a b 1 1 (c)P(c - a - b) 
21 c / P(c -a)I'(c -b)' 

and the two following formulas, respectively from [1, example 3, p. 69] and [2, 
equation 8]: 

/1-a, aa1\ 21-F2(1/2)F(c) 
(2) 2FV( 

and 
/1 n,rt p + l, p + 1nFp+1 

(3) 3F2( + 1) = (-1 )n+l(p + j) r(n + p +1) 

p + +1, p / P(++1 

for j and n positive integers, 1 < j < n, p 0 -1, -2, * ,-(2n - 1). 

3. Preliminary Results. Let al, a2, . . , an ; bi, b2, * , bn be 2n distinct but 
otherwise arbitrary complex numbers. Then it is well known [3, example 3, p. 98] 
that the determinant of the matrix H = (hi), hij = (ai + bj)y1 is 

1,2,- .,n 

II (a, - ak)(br - bk) 

det(H) = >12 . 

fl (ai + bj) 
i,j 
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A well-known special case of the above result is for the generalized Hilbert matrix 

(4) H = (hij), hij = (p + i +j -1)-' p #-1, -2, **. , -(2n - 1), 

whose determinant is [3, p. 98-99 and 300] 

(5) det(H) ={1!2! (n- 1)!}2 F(p + 1)F(p + 2) ; F(p + n) 
I'(n +p +1)I'(n +p +2) ... I(2n +p) 

Using (II), let us consider the following triangular matrices and their deter- 
minants: 

(6) A = (aij), a1 = (_ 1), det(A) = (-1)n(n?3) 2{1!2! (n -1)!} 

(7) B = (bij), b 1 d eB+l _ ()1 )n(n+3)/2 
F=(j)F(i i-- + 1)' {1!2! (n -1)! 

= ( -1 j+(i +j - 1) 
C = (c'6), cii 2i-1F(j)F(i - j + 1)' 

det(C) = 
(_1)n(n1)/2 1{2 4! (2n - 2)!} 

2{12! ..(n - 1)! I 

4. The Evaluation of Determinants. Our aim here is not to evaluate a long list 
of special determinants, but to illustrate a method by giving a few examples. 

(a) Let us evaluate the determinant of the muatrix 

(9) E = (eij), eij1 

Using (6), we form the matrix product 
n 

AE = (aij), aUj = Z aik ekj. 
k=l 

Then from (1), we have 

1 1~~~~1 
(10) j =(P + j+ 1) 2 

p + j + / 
(10)~~~~~~~~~~~~~~~~~~~ 

= (p + i + - l)r(p + 

We know det(A) from (6) while from (10) and (I) we have 

det(AE)= {F(p + 1)F(p + 2).. F(p + n)} 

But det(H) is known from (5) and hence, using (III), we obtain 

(11) det(E) =_det(AE) 
i 

( 
)n(n?3)I2 

{ 1!2!* .. (n - 1)!} 

det(A) F(n + p + 1)F(n + p + 2) '(2n + p) 

(b) Starting with the matrix 
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(12) F = (fij), fij F(i + i) 

we form the product 
n 

BF = (3ij), fij3 = b ikfkj 
k=1 

with B defined by (7). Again using (1), we obtain 

13) ij F(i)F(p + j + 1) 2F1 (I? + i 1 i) 

F(j + l)P(p + i - 1) 
F(p)F(i)F(p + i + j) 

Now we know det (B), and from (13) and (I) we obtain 

det(BF) = {( -) {F(p)F(p + 1) . F*(p + n - 1 )}det(E). 

But det(E) is known from (11), and so 

de _F 
det(BF) 

t( ) det(B) 

( n!F(n + p){1!2! .(n - 1)!}2 {(p)F(p + 1).. .F(p + n - 1)12 

{F(p)jn{F(p)F(p + 1)..(p + 2n)} 

(c) Again, from (8) and (9), we form the matrix product 

CE = 

p(P+ j+ 1)2F1 p + 

F(1/2) 

2p+jp+ i + ?i>(p-i +j+2) 

which we obtain by using (2). 
But from (8) and (11) we know det(C) and det(E) so that, using (I), we 

easily obtain 

det(G) = (2P+n {2!4... (2n - 2)!} 
-\/7rF( +p +1)F(n +p +2) .. F(2n +p) 

where 

( 2 ) ( 2 ) 

A great number of examples can be obtained in this way since, in principle, any 
summation formula can be used and the triangular matrices can be chosen at will. 
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Moreover, once a particular determinant is evaluated it serves as a stepping-stone 
to obtain other results. 

5. Analytic Inversion for Some Particular Matrices. Let D be a matrix whose 
n-order inverse D ' is known explicitly and let S and T be two matrices such that 

ST = D. 
Then 

(15) D-l= (ST)-' T-=g1 

Multiplying (15) successively on the left by T and on the right by S, we obtain 

(16) S-1= TD- 

and 

(17) T71 = D-'S. 

That is, the inverses of S and T are obtained as a product of known matrices. 
Let us now consider the particular case obtained by taking for our matrix D 

the generalized Hilbert matrix (see equation (4)), whose n-order inverse is well 
known [4] and is given by 

D-' = (dij), 

(18) (1)i+j r(n + p + i)(n + p +j) 

p + i + j - 1 f(i)r(j)F(p + i)F(p + j)r(n - i + 1)F(n - j + 1)' 

It is easy to verify, via Gauss's theorem, that the matrices 

IF(p + i) 
(19) S = (sij) Sij = r(p+i+j)' 

(20) T = (t j) , (j = (i+1)' 

are factors of the generalized Hilbert matrix, so that from (16) and (17) it becomes 
possible to obtain explicit expressions for the general terms of the n-order inverses 
of S and T. 

(a) From (16), (18) and (20), 
n 

S- = TD-1 = (aij), Oij = E tikdkj, 
k=1 

and so 

= (1l)i+j+lF(n+p+j) 
aj rF(j)F(p + j)r(n - j + 1) 

n 
(-1)kr(n + p + k) 

k=i (p+k+ j - 1)F(p + k)F(k-i + 1) F(n-k+1) 

We notice that the first i - 1 terms of the series are zero because of the presence 
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of the factor F(k - i + 1) in the denominator. Hence replacing Ek=l by Ek=i 

and shifting the summation index we obtain, in the usual notation for the generalized 
hypergeometric series [1, p. 73], 

(-l)i+' F(n + p + i)F(n + p + j) 
p + i + i F1 (j)F(p + i)F(p + j)F(n - i + 1)F(n -j + 1) 

(21) (i -n, n + p + i,p + i + j- ) 

p + p + i+ 

The 3F2(1) in (21) can be summed in four particular cases. 
For i = 1 we use (3) and obtain 

(-1 )+j]P (n + p + i) 
=F (j)IF(p + j)F(n - j + 1) 

For i = n the 3F2(1) in (21) reduces to unity, and 

(-l)i+lP(2n + p)F(n + p + j-1) -nj = 
F(j)F(p + j)P(n + p)F(n - j + 1) 

For j = 1 and j = n the 3F2(1) in (21) reduces to a 2F1(1) which can be summed 
by Gauss's theorem, and we obtain respectively 

= (-1)_I1+i(n + p + i) 
F(i)F(p + 1)F(n - i + 1) 

and 

(-1)'+r'(2n + p)F(n + p + i-1) 
in = I{r(n + p) }2F(i)(n -i +1) 

We note that it is possible to obtain a recurrence relation between o-i+l,j and aj,, 
by using a known transformation of the series 3F2 (1). 

(b) As for the matrix T, it is closely related to the Euler semi-matrix 

U = (Uij) nuij= 
(-1)i'(i -1)! U = (u~) U1~7 (i - .j)!(j -1)! 

which is its own reciprocal, and we find by inspection that 

(22) T-1 = (rij), Tij = (i ? -I 

(22) ~~~~~~~F(i)F(j - i + 1) 

This result can easily be verified directly. Indeed if rij is the general term of the 
matrix product TT-1, then from (20) and (22) we have 

= E tijlkj = 
r 

(k)-i+ 2F1 ( - i)( 1) ( - i)F(j) = 
k=1 IF(j)FIP(2 - i) 2 -i ) 

where as usual bij = 0, 1 respectively for i # j, i = j. However, from (17), T- 
is also equal to the product D'S so that (18) and (19) yield 
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(-1)i+lP(n + p + 1)P(n + p + i) 
=tS =r(i)r(n - i + 1)r(n)r(p +j + i)r(p + i + 1) 

(23) /1 -n,n+p+l,p+i 
*3F2|1 . 

p+i+ 1,p+j+1 

Hence (22) and (23) imply the formula 

/1- n,n + p + 1, p + i 
3F2 1 | 0 if 1 < j < i < n, 

p+i+l,p+j+l 1 

(24) r(n)r(p + i + i)r(p + j + 1)r(n - i + 1) 
r(n + p + 1)r(n + p + i)r(i +j - i) 

if 1 ? i _ j _ n. 

We note that for j = 1 (24) is a special case of equation 10 of [2], if i = j = 1 
it is a special case of Saalschiitz's theorem [1, Theorem 29, p. 87], while if i = n or 
j = n, it reduces to Gauss's tleorem. 

The last relation can be proved directly by considering the formula [5, equation 
2.1, p. 238] 

(-in1, a, b \ f ( b) / -M y b, e - a 
3F2 1 3F2b ) 

e,f e,l 1+b-f-fn / 
If we w rite 

m=n- 1, a=n+p+1, b=p+i, e=p+j+1, f=p+i+1, 

we obtain 

1-n, n + p + 1, p + i ) 

3F2 |1 

\p+i+lp(+p+i) (1n/ (25) = I'~(n)]P(p + i + 1) 1)j n 
(25 ) ~~~r(n + p + i) - 1 n, p + i + ) 

r(n)r(p + i + 1) - n, p + i 
r(n + p + i) 2F1 1) to n terms. 

But for 1 ? j ? n the 2F1(1) on the right of (25) always terminates naturally after 
at most n terms and hence the series is complete. Summing by Gauss's theorem 
(1), we obtain (24). 

I offer my sincere thanks to Professor F. M. Goodspeed for his kind help in this 
work. 

Universite Laval 
Quebec, Canada 



CONDITIONAL LEAST SQUARES POLYNOMIAL APPROXIMATION 659 

1. E. D. RAINVILLE, Special Functions, Macmillan Company, New York, 1960. 
2. J. L. LAVOIE, "On inverses of finite segments of the generalized Hilbert matrix," 

MTAC, v. 18, 1964, p. 141-143. 
3. G. P6LYA & G. SZEGO, Aufgaben und Lehrsdtze aus der Analysis, vol. 2 (reprinted), 

Dover Publications, New York, 1945. 
4. A. R. COLLAR, "On the reciprocal of a segment of a generalized Hilbert matrix," Proc. 

Cambridge Philos. Soc., v. 47, 1951, p. 11-17. 
5. W. N. BAILEY, "On the sum of a terminating 3F2(1)," Quart. J. Math. Oxford Ser. (2) 

v. 4, 1953, p. 237-240. 

Conditional Least Squares Polynomial 
Approximation 

By R. W. Klopfenstein 

There are many motivations for the development of least squares polynomial 
approximations to sets of data. If the data is empirical, the motivation may be the 
smoothing out of empirical errors to obtain a representation superior in accuracy 
to the original data. Or if the data is in principle exact, the motivation may be to 
obtain a compact approximate representation for the data. In the case of data having 
widely variable character, it is often expedient to segment it and produce distinct 
polynomial representations in different ranges of the independent variable. 

In many cases, it is necessary to introduce constraints on the least square ap- 
proximation problem. These may occur, for examiiple, in connection with data for 
which certain properties are known exactly from the underlying physical or mathe- 
matical model. They miay occur also where data is to be fitted in several separate 
ranges and it is desired to preserve certain continuity properties from one segment 
of the representation to the next. 

When the least square polynomials are being provided via the normal equations 
[1], it is often reasonably straightforward to solve the constraint equations ana- 
lytically for one or more of the undetermined coefficients and insert these into the 
set of linear algebraic normal equations. Use of the normal equations is, however, 
extremely wasteful of both storage and computing time. In addition, the normal 
equations are notoriously poorly conditioned so that one is rarely successful in 
producing least square polynomials beyond the fifth or sixth degree with single 
precision calculations. 

The least squares algorithm via orthogonal polynomials [2] is vastly superior in 
almost every respect. This is especially true when the Lanezos three-term recursion 
[3] is incorporated in the process. In this case, if the resulting polynomial is to be 
used solely for function evaluation purposes, it is not even necessary to produce 
the explicit resulting polynomial with the inherent resulting rounding problems. 

It is the purpose of this note to describe a simple transformation that will 
permit the solution of the least squares approximation problem subject to a class 
of constraint conditions. This transformation results from the generalization of an 
approach suggested by Hamiming [4]. The transformed problem is of standard 
least squares type without constraints and may be solved through standard al- 
gorithms for this purpose. 

Received April 22, 1964. 


