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1. Introduction. General iterative methods based on the notions of the relative 
error functional and the projection are introduced for the solutions of a class of 
nonlinear operator equations in Hilbert space. It is shown that general iterative 
procedures based on the variational theory of operators (which include the classical 
steepest descent method and other gradient methods) are first-order approximations 
in the sense of the Fr6chet differential to the methods introduced in this paper. 

The former procedures are closely related to the recent works of M. M. Valnberg 
[18], [19], Ju. Lumiste [11], the author [131 and others (see [13], [18]). These references 
contain various proofs of convergence of the method of steepest descent for certain 
classes of nonlinear operator equations. Proofs of convergence of some of the other 
procedures described here will appear in a separate paper. 

When specialized to linear operators, the results may provide a broader unifying 
interpretation for a number of iterative methods for the solutions of linear operator 
equations developed by Altman [1], Gastinel [2], Hayes [4], Hestenes [5], Kantoro- 
vich [7], Krasnosel'skil and Kreln [8], Lanczos [10], Petryshyn [14] and others. 
It is worth noting that the formulation of various problems in numerical analysis 
in the framework of functional analysis unifies different problems and methods and 
sometimes leads to illuminating insight as reflected in the contributions of M. 
Altman, L. Collatz, L. V. Kantorovich, J. Schr6der, and others. 

This paper also extends to nonlinear operators certain properties of known 
algorithms for iterative solutions of linear operator equations. 

The author is greatly indebted to Professor R. C. F. Bartels for many stimu- 
lating discussions on iterative methods, and to the referee for helpful recommen- 
dations. 

2. Preliminaries. We begin by recalling a few definitions and results. Let E 
and Y be two normed linear spaces over the field of real numbers and let X be an 
open subset of E. Let F be a mapping of X into Y. Let xo be a point of X and let h 
be an arbitrary element in E. 

Definition 1. If for every element h E E, and t real, 

d 
F(xo + th) dt tO 

exists, it is called the GAteaux variation (or the weak differential) of F at xo with 
increment h, and is denoted by 6F(xo ; h). 

The weak differential is homogeneous in h of degree one. 
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Definition 2. If 5F(xo ; h) is linear and bounded in h, it is called the Gateaux 
differential of F at xo with increment h, and is denoted by DF(xo ; h). 

Let the Gateaux variation of the operator F(x) exist in some neighborhood 
N(xo) of xo and let 6F(x; h) be continuous in x at xo. Furthermore, assume that 
5F(x; * ) is a continuous operator in h at the origin h = 0. Then 6F(x; h) is a 
GAteaux differential [17]. 

The following characterization of the GAteaux differential follows directly from 
Definitions 1 and 2. A necessary and sufficient condition for F(x) to be Gateaux 
differentiable at x = xo is the existence of a mapping L(xo ; h) which is linear and 
bounded in h such that for any h inthe xo-translateof X, i.e., h E X - xo , the follow- 
ing representation holds 

(2.1) F(xo + h) - F(xo) = L(xo; h) + R(xo; h), 

where R(xo; h) has the property that 

(2.2) lim 11 R(xo; h) =. 
i---*+ 7 

If such a representation exists, it is unique and L(xo ; h) = D(xo ; h). 
Definition 3. The mapping F: X -* Y is said to be Fr6chet differentiable at the 

point xo if the representation (2.1) holds, where L(x; h) is bounded and linear in h, 
and the following is satisfied: 

(2.3) lim II R(xo;h) . = 

L(xo ; h) is called the Fr6chet differential of F at xo and is denoted by dF(xo ; h). 
Property (2.3) can be replaced by the equivalent condition that (2.2) holds uni- 
formly on each bounded set. 

The mapping dF(xo; - ) which is a bounded linear operator is called the Fr6chet 
derivative of F at xo. The GAteaux derivative DF(xo; ) is similarly defined. 

Definition 4. If Y = R = the real line and E is a Hilbert space H, then L(xo ; h) 
is a bounded linear functional and can therefore be uniquely represented as a scalar 
product, i.e., there exists a unique element r(xo) of H such that 

L(xo; h) = (r(xo), h), 

where the notation on the right denotes the scalar product. r(xo) is called the 
gradient of f: X -* R at x = xo, and is denoted by grad f(xo). 

The variational method of proving existence and uniqueness theorems for the 
solutions of nonlinear operator equations is based on the construction of a functional 
whose critical points coincide with the solutions of the equation considered. This 
reformulation is possible, for instance, under the conditions expressed in the follow- 
ing well-known theorem [9], [15]. 

THEOREM (KERNER'S SYMMETRY CONIDITION). Let F(x) be a mnapping of a Hilbert 
space H (or part of it) into itself. Let F(x) have a Gdteaux differential DF(x; h) at 
every point x in S = {x: 1 x -xo 11 < r}, where r > 0. Assume that at every x E S, 
the functional (DF(x; h), k) for h, k E H, is continuous in x. Then in order that the 
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mapping F(x) be the gradient of some functional f(x) defined on S, it is necessary and 
sufficient that the bilinear functional (DF(x; h), k) be symmetric for every x E S, i.e. 

(DF(x; h), k) (h, DF(x; k)) for h, k E H. 

Under these conditions, 

f(x) -f(xo) = (F(xo + t(x - xo)), x - xo) dt. 

3. General Iterative Methods Based on Variational Theory of Operators. Con- 
sider the nonlinear functional equation 

(3.1) G(x) = 0, 

where G is defined on a Hilbert space H. For this discussion, it will be assumed that 
the operator G satisfies Kerner's symmetry conditiont in a sphere S c H, so that 
it may be identified with the gradient of a real-valued functional, say g(x),. defined 
on H. Assuming that sufficient conditions for the existence of a local minimum 
Df g(x) in the sphere S are met,t some aspects of general iterative methods based on 
variational theory, which include the methods of gradient and steepest descents, 
will now be examined. 

Consider the following class of iterative algorithms 

Xn+= Xn + a,-Zn X 

where an is a sequence of real numbers and zn is a sequence of elements in H. Start- 
ing with an arbitrary element xo E S, choose the next approximation xi to the 
solution x* of (3.1) such that in the direction of x0 to x, the functional g(x) de- 
creases most rapidly. This is the direction of steepest descent from x0 to xl . 

This direction depends on the metric used to define distance. It may be recalled 
that if [X, pl], [X, P2] are two metric spaces with the same set X, then the distance 
functions p' and P2 are said to be topologically equivalent metrics if they define 
the same topology (i.e., the same open sets) on X. In particular, if 11 11 and 1- are 
two norms on the space E, then they are equivalent if and only if there exist positive 
constants ,B and - such that 

/X31 X -x? xX 

for any x E E. Although the definition of the Fr6chet differential of a mapping 
F: X -* Y is written in terms of the norms on X and Y, it is easy to see that if X 
is endowed with two equivalent norms 11 11 and I ., then [X, 1] and [X, 1 1 ] have 
the same Fr6chet differentiable functions. 

The next theorem discloses explicitly the dependence of the direction of steepest 
descent on the metric. 

THEOREM 1. Let To be a self-adjoint positive-definite bounded linear operator defined 
on the Hilbert space H with the inner product ( , 

(Toh, h) m (h, h), m > O, for all h E H. 

t Various relaxations of this assumption and sufficient conditions for g(x) to attain a mini- 
mum in S are discussed in [131 and [12], where the convergence of a generalization of the method 
of steepest descents is established for certain classes of nonlinear operator equations. 



ON GENERAL ITERATIVE METHODS 17 

For any two elements x, y E H, define the distance between x and y by the metric 

(3.2) p(x, y) = x-y - (To(x - y), x-y) 

Let x0 be as before. Then the direction of steepest descent from xo is given by 

= -T 'G(xo). 

Proof. Let the norm of an element x E H be defined by 

I x = (Tox, x) 

Let xi be the next approximation to the solution x*. If the metric (3.2) is used to 
define the distance between xo and xl, then r, the set of all points at a distance s 
from xo is given by 

r = {x: (To(x - xo), x - xo) = s21 

The direction of steepest descent, h x - xo, is determined by minimizing 
g(xo + h) subject to the constraint x E r. That is, 

(3.3) (Toh, h) =S 

By the method of Lagrange's multipliers, if we set 

sp(h) = g(xo + h) + X(Toh, h), 

then 

dspc(h; k) = O for all k E H. 

That is, 

grad <p(h)=0. 

But grad (Toh, h) = 2Toh since To is self-adjoint; hence 

(3.4) h =- -- T 'G(xo + h). 

Elinminating X, using (3.3) and (3.4), we get 

(3.5) h = -s(G(xo + h), T0`G(xo + h)r)-"2T_'G(xo + h). 

Since G(xo) 0 0, it follows from (3.5), using the continuity of G(x) at x = , 
that as s -O 0, the direction of steepest descent approaches - To'G(xo). 

Having selected zo, the next approximation will then be 

Xi = xo - aoTo'G(xo), 

where ao is yet to be determined. In general, from the nth to the (n + 1)st iteration, 
we have 

(3.6) Xn+1 = Xn- CnTn, G(xn), 

where Tn is a positive-definite self-adjoint operator defined on H. The parameters 
an may be chosen by any of the following procedures: 

A. The Exact Optimum Gradient Method. For fixed xn , Tn , the functional g(xn +) 
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= 9(xn - a.nTn7'G,,), where Gn = G (x.) is a function of a,n. In the strict sense of 
the classical method of steepest descent, a,, should be chosen so that 

n(an) = g(xn - anTn1G,n) 

is minimum. That is, a,n is taken to be the smallest positive root of the equation 

drq(a)/da = 0. This method, however, is computationally complicated as it requires 
the determination of g(x) and a tedious nonlinear minimization problem at each 
iteration. 

B. The Approximate Optimum Gradient Method. In this procedure, rather than 
choosing an to minimize the exact g(xn+l) we minimize the second-order approxima- 
tion to g(x,,+i) obtained by using the first two terms of the Taylor series [3], [7] 

2 

g(x.+i) g(x) - a,n,(Gn; Tn1Gn), + an (DG(xn; Tn'Gn) T'Gn). 

Therefore 

(Gn; T'Gn), 
(DG(xn; TlGfn)) T n1Gn) 

C. Minimization of the Norm of the Residue. If the operator G has a second-order 
Fr6chet differential, an effective algorithm is obtained by choosing a,n to minimize 
the norm of the first-order approximation to the residue G(x,n+l). To this end, 
Taylor's formula may be used to write 

Gn= Gn + DG(xn; xn+1 x-n) 
+ 1D2G(Xn; xni- Xn+l Xn)- 

wherefn = xn- + rrn(xn+i - xn), 0 < rn < 1, and the bilinear map D2G(Xn; *) 
is the second-order Fr6chet derivative of G. atn is then chosen so that for fixed xn 

7 (atn)= | Gn - anDG(xn; TnJ1Gn) 

is minimum. Hence 

(Gn X DG (xn ; TnlGn )) 
agn 1l DG(xn; T;'Gn) 112 

It is worth noting that for the case of linear equations, this reduces to the algorithms 
developed by Krasnosel'skil and Kreln [8] and Lanczos [10], and that the approxi- 
mate optimum gradient method coincides with the exact optimum gradient method 
studied by Kantorovich [7]. 

D. Sequential Descent Mlethods. A larger class of algorithms of steepest descent 
may be obtained by determining a range for a,n within which the sequence (3.6) 
converges to a solution of (3.1). This approach is more useful than the other descent 
methods since it allows a choice of an and Tn which leads to a rapid rate of con- 
vergence of the iteration process [12]. 

In any of the above procedures, a sequence xo, xi, * , x,, *** is generated. 
Let P be the broken-line path of steepest descent. The path P may end at a point 
x* where the direction of steepest descent does not exist, i.e., G(x*) = 0, or may 
continue indefinitely lying entirely within the sphere S, or may cross the boundary 
of S. It is shown in [13] that under certain conditions on an , Tn and G, the last 
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possibility can be avoided. In the subsequent discussion, it will be assumed that the 
path P continues indefinitely within S. 

THEOREM 2. Let G(x) satisfy Kerner's symmetry condition. Let G(xo) $ 0 and 
let there exist a convex neighborhood Q of xo such that the linear operator dG(x; ) is 
continuous in x on Q. If Xn , Xn+i E Q, then for an sufficiently small and positive 

g(xn+l) < 9(Xn), n = 0, 1, 2, * 

Proof. The scalar product (G(x), k) has for each k a Fr6chet differential at x 
which is equal to (dG(x; h), k). This follows from the definition of the Fr6chet 
differential. In fact 

(G(x + h) - G(x), k) = (dG(x; h), k) + (R(x; h), k), 

where 

lim 11 R(x; h) I o 

llhll-O 1l h I! 

Therefore, 

limJ h II-'I (G(X + h) -G(x), k)- (dG(x; h), k) = lim (R(x;h)k) =. 

Hence, g(x) has a second-order differential d2g(x; h, k) = (dG(x; h), k) for x E Q. 
By continuity of dG(x; h), d2g(x; h, k) is continuous in x, for x E Q and is sym- 
metric in h and k (Theorem 8 in [3] or Satz 1 in [9]). Therefore, Taylor's formula 
[3, Theorem 5] may be used to get 

(3.7) g(xn+l) - g(Xn) = -an (Gn X Tn7'Gn) + R2, 

where 
1 

R2= (1 - t) d2g(xn + t(xn+l - xn);xn+ -Xn x n - xn) dt 

(3.8) 1 
= an2 (1 - t)(dG(xt; T-'Gn)I TnlGn) dt 

and 

Xt = x,t + t(Xn+i - xn) 0 < t < 1. 

The theorem then follows using (3.7) and (3.8) and noting that an and (Gn, Tn-'Gn) 
are positive. 

4. Iterative Methods Based on the Relative Error Functional. Consider -the 
funictional equation 

(4.1) G(x) = 0 

and assume that it has a solution x* in a certain bounded convex set Q of a Hilbert 
space H. If xn is a sequence of approximations to the exact solution x* generated by 
a certain algorithm, we define for the nth iterate, the error sn and the residue rn 
respectively by 

S, = Xn - x 
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and 

= G(x.). 

For x E Q, define the relative error functional by 

e(x) = (s, Qr) = (x - x*, QG(x)), 

where Q is a certain bounded linear operator. Clearly, e(x) gives some measure of 
the derivation of the approximation x,, from the exact solution x*. 

Let G be GAteaux differentiable on Q, then 

De(x; h) = lim e(x + th) - e(x) 
t- *o t 

= {lim x* Q(G(x+th)G(x))) + (h, QG(x + th))} 

= (x - x, QDG(x; h)) + (h, QG(x)) 

= ([QDG(x; )]*(x - x*) + QG(x),h), 

where the asterisk denotes the adjoint of the bounded linear operator QDG(x; *). 
Hence 

(4.2) grad e(x) = QG(x) + [QDG(x; .)]*(x - x*). 

The next theorem shows that the problem of solving (4.1) is closely related to the 
functional e(x). 

THEOREM 3. Let G be Gdteaux differentiable on the convex set Q and assume that 
for any x, x + h E Q and real t, 

dtQG(x + th), h> |2 h 

where m > 0. Then e(x) = 0 and grad e(x) = 0 if and only if x = x*, where x* is 
the solution of (4.1) in Q. 

Proof. The sufficiency is evident. To prove the necessity, suppose there exists an 
element u E Oy, u # x* such that e(u) = 0 and grad e(u) = 0. Then, considering 
the real-valued function (x* - u, QG(tu + (1 - t)x*)) for 0 < t < 1 and apply- 
ing Rolle's theorem we get 

d 
dt (x* - u, QG(tu + (1 -t)x *) = 0, 

where 0 < t < 1. That is, letting x = (u + (1 -)x*, we get 

O = lim (At)-, (u - x*, QG(x + At(u -x*)) -QG(x)) 

= lim r-(1 -)2 (u - x, QG(x + rh)- QG(x)), 
7-00 

where 

At 
-= 1_, h=u-x. 
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Hence, 

Ku-x, d-QG(x + -h) | -O 

On the other hand, since x, x + h E Q, we have by assumption 

Ku-x, d QG(x + rh) | 2ml u-xII2 m > 0. 

Consequently x x* = u. 
If grad e(u) = 0, then by (4.2), 

QG(u) - QG(x*) = [QDG(u; )]*(x* - u). 

Taking the inner product of the last equation with (x* - u) and using a mean value 
theorem argument as in the first part of this theorem we arrive at a contradiction 
unless u = x*. 

For linear operators the following stronger theorem holds: 
THEOREM 4. Let 

(4.3) G(x) = Ax-b = 0, 

where A is a bounded linear operator defined on H and b is a fixed element. Let Q be 
an invertible operator defined on H and assume that A is Q-symmetric and Q-positive 
definite, i.e., 

(QAx,x) _ C 11 Qx 112, x E H, C > O. 

Given any linear subspace L of H and any element x E H, then 

e(x) < e(x + h) 

for all h E L if and only if grad e(x) is orthogonal to L. In particular x minimizes 
e(x) if and only if x = x*, where x* is the solution of (4.3). 

Proof. Let h be any nonnull element of L and let x be an arbitrary element in 
H. Then 

e(x + h) - e(x) = (QG(x + h), x - x* + h) -(QG(x), x - x) 

= (QG(x), h) + (QAh, h) + (QAh, x -x*) 

= 2(QG(x), h) + (QAh, h). 

Also, since dG(x; h) = Ah in this case, we get 

grad e(x) = QG(x) + QAx - QAx* = 2QG(x). 

Thus we have 

(4.4) e(x + h) - e(x) = (grad e(x), h) + (QAh, h). 

Therefore if grad e(x) is orthogonal to the subspace L, the first term on the right- 
hand side of (4.4) vanishes, and in view of the assumption made on QA, it follows 
that 

e(x + h) - e(x) ? 0. 
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This disposes of the sufficiency. To prove the necessity, assume that there exists 
an x E H such that for all h E L, e(x) < e(x + h). Since L, by assumption, is a 
subspace of H, we have for any real number t, and an arbitrary nonnull element 
h E L, 

0 < e(x + th) - e(x) = t2 (QAh, h) + t (grad e(x), h) 

= (QAh, h{[t~ _ (grad e(x), h)]2 

(grad e(x), h)2 
4 (QAh, h) 

Choosing t such that the term in the bracket vanishes, we arrive at the conclusion 
that (grad e(x), h) = 0. 

Remark. This theorem is a generalization of a result stated by Antosiewicz and 
Rheinboldt [16, Theorem 14.2]. The proof given there, however, contains a mis- 
print. 

The variational approach to the solution of equation (4.3) would involve the 
functional 

g (x) = 2{ (QAx, x)- (Qx, b) - (Qb, x)}. 

Indeed, it may be easily verified that Q-1 grad g(x) = G(x) = Ax -b and that 
a necessary and sufficient condition for x* to be the solution of (4.3) is that x* 
minimize g(x). 

For the class of linear operator equations defined in Theorem 4, we have, on 
the other hand, using the relative error functional, 

(4.5) e(x) - (QAx, x) - (Qx, b) - (Qb, x) + (Qb, x*). 

Thus the following relation is obtained: 

(4.6) e(x) = 2g(x) + (Qb, x*). 

This relation shows that the iterative methods based on the minimization of the 
relative error functional and the gradient methods are the same for linear operator 
equations. In both cases, we seek to minimize the same measure of the error. It 
may be noted that while the relative error functional is defined in terms of the 
error s, which is unavailable for computational purposes, relation (4.6) shows that 
this difficulty is only apparent in the case of linear operator equations. Crucial to 
this simplification is the fact that the residue and the error are related by the 
equation r = As. 

Returning to the iterative methods based on the consideration of the relative 
error function, for nonlinear functional equations, we seek, in view of Theorem 3, 
to minimize either the functional e(x) or I grad e(x) .1 The only difficulty, however, 
is that these quantities are defined in terms of the error s, which cannot be elimi- 
nated. To overcome this difficulty, we replace s by the first-order approximation 
(QDG(Xn; * )]-l'QG(xn) It is evident that this gives the exact value of s for the 
linear operators of Theoremii 3. 
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We may then proceed to minimize e (x) successively in the directions pi, p2 , 

Pn X ... of linearly independent vectors determined by some algorithm. This 

gives 

Xn+1 = xn - anpnX n = 0, 1, 2, * 

e(xn+l) = (Xn - - anipin , QG(Xn - anpn)) 

~ ([QDG(xn; )']-QG(x.) - anpn , QG(Xn) - anQDG(xn ; Pn)) 

so that the minimum of e(xn+i) in the direction pn is approximately obtained for 

an _ (pn , QG(xn)) 
(pn , QDG(xn ; pn)) 

Various choices of pn and Q lead to algorithms mentioned in the introduction of 
this paper for the case of linear operator equations. 

5. Iterative Algorithms Based on the Projection Method. The class of projection 
methods considered by Gastinel [2], and Householder and Bauer [6] for solving 
linear algebraic systems of equations and by Petryshyn [14] for linear operator 
equations involves the resolution of Sn into two components. One of these is Sn+l , 

and is required to be smaller than s,n in some norm; the other belongs to some sub- 
space selected at each iteration. In considering the projection method for solving 
nonlinear functional equations, an invertible operator Q may be selected and the 
error Sn+1 is resolved in the form 

Sn+i = Sn - anQrn- 

an is to be chosen so that the element aCnQrn is the orthogonal projection of the 
vector Sn+1 on Qrn in the sense of the metric induced by the scalar product [x, y] 
(TnX, y), where Tn is a positive definite self-adjoint linear operator. Hence 

(TnSn, Qrn) 
(5.1) an (TnQrn , Qrn) 

This value of an minimizes the norm of the error vector Sn1 - The numerical 
computations cannot be carried out until the operators Tn and Q are specified. 
Moreover, these must be specified in such a way that Sn is eliminated from (5.1). 
In considering nonsingular linear operator equations, one choice which suggests 
itself is Tn = BnA; then TnSn = Bnrn . Suitable choices for Bn would be A* or A. 

For nonlinear operator equations, we shall again replace Sn in (5.1) by the first- 
order approximation [QDG(xn; * )]-'QG(x,,). Several specializations of an lead to 
the methods based on the variational theory discussed in Section 3. 
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