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Let A [a=a] be an n X n matrix with complex entries. We define p(A) to be 
the spectral radius of A and I A I to be the matrix [I aij]. 

A. Brauer [1], W. Ledermann [2] and A. Ostrowski [4] have developed bounds for 
p(l A 1). Their results, coupled with the result of Perron and Frobenius [6] that 
p(A) < p(I A f) give upper bounds for p(A) which are not less than p(l A I). These 
bounds are restricted to matrices with nonzero entries and do not take into account 
the effect of the phases of the entries of A on p(A). In Section I of this paper we 
obtain a sequence of bounds for p(A ) in terms of p(f A' I) (r = 1, 2, ) which are 
less than or equal to p( l A j) and converge to p(A ). In this manner we are partially 
accounting for the effect on p(A) of the phases of the ai,. In Section II we derive 
bounds for p(A) in terms of the Frobenius norm of A. These bounds always lie in 
the field of values of A, are computationally well suited to complex matrices and 
can be used in conjunction with the techniques of Section I. 

The authors are indebted to Olga Taussky and Alston Householder for sugges- 
tions. 

I. Bounds for p(A). Let aft = I ajk | exp (iOjk), where 0 ? Gjk < 27r. We define 

Wk = [p(l Ak I )Ilk, k = 1, 2,*.. 

LEMMA 1. If k and r are positive integers, then wk, < wk . 

Proof. Since 0 I I Ak,l I< I Ak kl it follows that p(j Akr j) ? p(l A" I'). We have 
always p(l Ak f?) = [p(l Ak I)]?* Consequently, 

[p( | Akr I )]1lkr < [p( l Ak I )]l/k 

or Cwkr ?< wk 

In particular, we deduce 

Wr w1 = p(l A 1), r = 1,a, . 
LEMMA 2. The Ck (k = 1, 2, * * ) form a sequence of upper bounds for p(A) which 

converges to p(A). 
Proof. Since p(Ak) ? p(| A f), it follows that p(A) 5 [p(f A"' |)]/ = k 

which proves our first assertion. To prove convergence of the Wk we define the 
multiplicative matrix norm 

n\ 

N(A) = max E ( ai) 
1:5 5n j-1 

and use the general results [3] that 

lim [N(A k)]llk = p(A) 
k-oo 

and [p(A )]k < Wkk ? N(Ak). Taking kth roots we conclude 

limwk = p(A). 
k-oo 
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Note. In general the wk do not decrease monotonically to p(A). However, 
Lemma 1 can be used to obtain decreasing subsequences such as wc , "2, 24, C48, * ' ' . 

If A is irreducible, it is known [6] that "'1 = p(A) if and only if A = ei"DI A ID-', 
where D is a diagonal matrix whose diagonal entries have modulus unity. If A is 
of this special form, thenw1 w=Wk (k = 1, 2, * ). Furthermore, if we know all the 
Wk are equal, Lemma 2 tells us that p(A) has their common value. It is natural to 
ask what happens in case wj = k for some j and k. 

THEOREM 1. If A has only nonzero entries and if m > 1, then w, "m if and 
only if p(A)-1. 

Proof. We have already renmarked that p(A) = w1 implies w1 = Cwk (k 1, 2,** ) 
and, in particular, co1 = ci n 

Conversely, suppose w1 = wm for some m > 1. This means 

p(l Am I) - [p(I A I)]m = p[l A Im. 

Since I A I" is a positive matrix and I Am I < I A jm' the Perron-Frobenius theory 
tells us that I A I' = I Am 1. If we write out the expressions for the j, kth entries of 
I A I' and I Am 1, and use the fact that the modulus of a sum of complex numbers 
equals the sum of their moduli only when the numbers have the same arguments, 
we obtain the equation 

0jll + 01112 + + 01m-.-k aik. 

Here, and elsewhere, congruences are modulo 27r; ajk is the argument of the j, kth 
entry of Am aind is independent of the indices 11, * m *, 1 < li < n (i = 1, **, 
m - 1). In particular, 

a -Olj + Oil + Oil + + 0111 Oi+Oi + +Oil +O 4j 

Similarly, 

a?ija Oil + Oil + + Oil + Ohj, 
and 

aijk Oial + Oll + * *+ Oll + Olk 

Therefore, 

(Xij + atjk O il + Oll + **+ Oll + Olk + Oil + Oll +l Ol -+01 

= ak + ajj = aik + an . 

Let 6r= an1 - air, 1 < r < n. Then 

aik = ai + ajk- - an 

- ail + all, - a1 

- (2an, - ali) + alk - an 

=i - &k + all 

Define D to be the matrix 

diag (exp ib5, * , exp tib) 

Then At = (exp iani)DI Am 1D1- so that 

p(Am) = p(l A"m ) 
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and 

p(A) = Win (01. 

THEOREM 2. If m and r are positive integers with r > 1, and f Atm > 0, then 
x"!, = , if and only if p(A) = wm . 

Proof. Suppose w. = wom. Then 

[p(| A"m )]/m _ [p(I Arm j)]r`tm 

and 

[p(f Anm )]r p(l Arm I). 

Since I A' I > 0, if we apply Theorem 1 to A", we may conclude that 

p(A`) = p(lA" 1). 

Hence, p(A) = wi. 

Conversely, suppose p(A) = wZ. By Lemma 1, wm _ wco. and, by Lemma 2, 
c,, 2 p(A). Consequently, co. = co,. 

Theorem 1 remains true if we replace the assumption "A has only nonzero 
entries" by the slightly weaker condition "for some r neither the rth row nor the 
rth column of A has zero entries and I A I' > O." Theorem 2 can be modified anal- 
ogously. However, the following example shows that in general it is not possible 
to relax the assumption of Theorem 1 that A is a matrix with only nonzero entries 
to "A is irreducible." This relaxation is possible in the Perron-Frobenius theory 
[6] and one is tempted to try it here. Let 

A= -1 0 1. 
0 1 0j 

Then A is irreducible but p(A) = 0 and wl = CO2 = A/2. 
In Theorem 2 we proved that the condition wo wk , where i < k, i I k, and 

I A' I > 0, is sufficient to ensure p(A) = wi . One would like to eliminate the re- 
quirement i I k; however, examples have been constructed showing that, in general, 
this is not possible. 

The following example shows that in some cases a rough estimate for W2 iS a 
better bound for p(A) than w, itself. Let 

A=[2 -1* 

Then p(A) t 1.62, cc t 2.62 and Co2 > 1.82. The square root of the Gerschgorin 
circle estimated for p(l A2 1) is 2. 

II. Upper Bounds for p(A) in terms of e(A). The Frobenius multiplicative matrix 
norm e(A) [5] is defined by 

n 112 

e(A) = I a1i 121 

Since e is a multiplicative norm we have p(A) ? e(A). The following result gives 
the condition for equality. 
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LEMMA 3. The Frobenius norm of A = [ajk] is its spectral radius if and only if 
ajk = e x xjk , where Xk denotes the complex conjugate of Xk and 0 < 0 < 27r. 

Proof. If aik = e "xjXk (j, k = 1, * * , n), then the only nonzero eigenvalue of 
A is eO( 1:=Ll I xi 12) corresponding to the eigenvector with components xj 
( = 1, * , n). Furthermore, 

n 

fe(A )]2 = E I 
Xi 12 1 Xk 12 

j,k=l 

(j=l 

On the other hand, suppose p(A) = e(A). We may assume p(A) > 0 since 
e(A) -p(A) = 0 implies A 0. Let ep(A) be an eigenvalueofmaximum 
modulus, whose associated eigenvector has components xj (j 1, ... , n) nor- 
malized so that p(A) = xi 12. We have, by the Cauchy-Schwarz inequality, 

n 2 

I Pt0p(A)xj 2 
= a aj Xk 

_<( aik 
12 

)( I Xk 12 j=1 *** n. 

In order that p(A) E(A), equality must hold for each j above, which implies 

ajk = XljXk (j k = ,. . . , n), 

where the tj are constants. Then 
n 

e p(A)xj = EZnjXkxk = nip(A), 
k-I 

so that qj = ei x- and a3k = e XjXkX as required. 
The following alternate proof of Lemma 3 is due to Alston Householder. 
The Frobenius norm is the square root of the su-m of the squares of the singular 

values of A, and the largest singular value alone is greater than or equal to the 
spectral radius. Hence, for equality, the others must be zero implying A*A is of 
rank 1. Therefore A is also of rank 1 and hence of the form ab* where a and b are 
columni vectors. But the only non-null root of ab* is b*a. From [E(ab*)]2 = a*ab*b = 

I b*a 12, we conclude a and b are linearly dependent, from which the result follows. 
Ideally, one would wish to develop bounds for p(A) which depend on E(A) and 

some measure of the departure of A from the special form of Lemma 3. One ap- 
proach is to minimize the Frobenius norm of matrices which are similar to A. 

Define 
_ n _112 

Ri= jE ai4 12)I aii 12 

and 

= E I aj 2)- 1211/2 

THEOREM 3. If A is an n X n complex matrix, then 

[p(A )]2 < [e(A )]2 _max I RI - Ci 
-1<i:5n 
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Proof. We prove the equivalent statement 

[p(A)]2 < [,E(A)]2 - (Ri - Ci)2, i 1, , n. 

Suppose first that neither Ri nor Ci is zero. Let D, be the diagonal matrix whose 
diagonal entries are all unity except for v # 0 in the ith position. Then p(D,AD,-7) 

p(A). Hence, [p(A )]2 < [E(D ADJ-1]2 = [E(A )]2 - Ri2 _ Ci2 + V2R 2 + V-2Ci2. 

If we minimize the right-hand expression over v we obtain V2 = Ci/Ri, and 

[p(A )]2 < [E(A )]2 _ (Ri - )2 

Since p(A), e(A), R, and Ci all depend continuously on the entries of A, it follows 
that the restriction Ri , Ci # 0 can be removed. 

If it happens that R,, Ci $ 0, where i is the index which gives the maximum in 
Theorem 3, then Theorem 3 may be applied to the matrix D,AD-l, where 
v2 = Cl/Ri, giving a possible improvement in the bound for p(A). 

If Xl1, ** , Xn are the eigenvalues of A, then it is easily seen that 

inf {[e(SAS1)]2: S nonsingularl 
I X i 12. 

i=1 

Hence, the bound given by Theorem 3 must be greater than or equal to E j 
We will now consider bounds which in some cases are. actually less than 

1 | j2* Let tr A be the trace of A. 
THEOREm 4. If A is an n X n complex matrix, then 

p(A ) (1 - 1/n )1/2{ [E(SAS-1)]2 _ I trA 12/n} 1/2 + I tr A I/n, 

for any nonsingular S. 
Proof. Let XM be an eigenvalue of maximum rnodulus. Then, from 

n 

?I xi I 5 [E(SAS')]2 
i1 

by an application of the Cauchy-Schwarz inequality we find 

I XM 12 < )]2 I 12 
i#M 

2 

< [E(SAS-')]2- Xi2 /(n-1) 
idM 

= [E(SAS-' )]2 - I tr A - XM 2/(n - 1), 

from which it follows, by elementary means, that 

I I 5 (1 - 1/n)'12{[e(SAS-')]2 - j trA 12/nl1/2 + I tr A /n. 

THEOREM 5. Let A be an n X n complex nonsingular matrix. Then 

[p(A)]2 < [e(SAS )]2 - (n - 1)1j detA i2/[e(SAS' )]21 }11n 

for any nonsingular S. 
Proof. Let XM be an eigenvalue of maximum modulus. As in Theorem 4, 

1 XM 12 < )]2 _ E I 2 
ipM 

An application of the arithmetic-geolmietric mean inequality yields 
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XM 12 < [E(SAS1)12 _ (n-1) TJ I X 12/(1%-1) 
i#M 

But 

II d i2/0t - (I det A 12/1 XM 12)1/(n-l1) 
ii?M 

>- {l det A 12/ [,E( ASA-1)]21 l/(n-1) 

from which the result follows. 
We observe that the quantity [E(SAS-')]2 occurring in Theorems 4 and 5 may 

be replaced by the bound for it given by Theorem 3. We use this fact in the discus- 
sion of the following numerical exanmple which illustrates the various bouinds. Let 

2 3 2 
A = 10 3 4. 

3 6 1 

Then p(A) = 11 and (Zt=1 I Xi 2)1/2 = 11.58. The Ledermann bound [2] is 16.77. 
The bound of Theorem 3 is 11.9 and, using this bound, we obtain fronm Theorem 

4 the bound 11.3 and from Theorem 5 the bound 11.6. 
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