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1. Introduction. The solution of f(x) = 0 in the p-adic field may be calculated 
by the Newton-Raphson process, the iteration of the transformation: x x 
f(x)/f'(x); as in the real field the formula cannot be applied successfully unless we 
have an initial approximation sufficiently close to a root for the subsequent iteration 
to converge. (In the p-adic field, "sufficiently close" is equivalent to "congruent to a 
sufficiently high power of p.") In this paper we deduce a simple criterion to ensure 
that the initial approximation is suitable and we develop a procedure for calculating 
the roots of f(x) 0 (mod pk) for any value of ks using the above process where 
applicable and a single-stepping procedure elsewhere. In ?6 we apply this algorithm 
to investigate solutions of a congruence connected with the existence of close-packed 
error-correcting binary codes. We deduce that for n < 270 and 2 ? r ? 20 there are 
no such codes other than the trivial codes and the Golay code. This result comple- 
ments results of Shapiro and Slotnick [5] and Selfridge [4] which show that there are 
no codes for r = 2, or r an odd integer less than 135, or n < 108. 

2. Notation. p is a prime and f(x) a polynomial with integer coefficients; 
fI(x) is the formal derivative of f(x). We use the notation pa 11 B for "pG I B and 
p +1 + B." Define 1(x) by pl 11 f'(x). Define 

b(m,x) = Max{[ M + 1],m-(x)}. 

We write 1, 11, 12, * for 1(x), l(x0, 1(X2), ; similarly, for b, bi, b2, * where 
the relevant value of m is clear from the context. We say x is a solution of type 
A mod pt if 
(1) f(x)-0 (modp') 

and m ? 21 + 1. We say x is a solution of type B mod pm if (1) holds and m ? 21. 

3. Properties of Solution-Sets. 
LEMMA 1. (i) lf x is a solution of type A mod pm, then b = m - land 2b _ m + 

1 _ 21 + 2. 
(ii) If x is a solution of type B mod pm then b = [(m + 1)/2] and b ? 1. 
Proof. These results follow directly from the definition of solution type. 
LEMMA 2. If f(x) = 0 (mod pt) and xi x (mod pb) then 
(i) xi is a solution mod pm of the same type as x. 
(ii) bi = b. 
(iii) If x is of type A mod pm then 11 = 1. 
Proof. By hypothesis, xi = x + upb for integral u; hence, 

(2) f(xl) = f(x) + Upbf'(X) + Vp2b 
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(3) f'(x) = f'(xi) + wpb 

for integral v and w, by Taylor's theorem for polynomials. Now pm I f(x) and, by 
definition of b, b + 1 > m and 2b _ m; hence in (2) 

(4) f(xi) ) 0 (mod ptm). 

To complete the proof we distinguish two cases. 
(a) If x is a solution of type A mod pm then, by Lemma 1 (i), b _ 1 + 1; hence, 

in (3), p' 11 f'(xi), i.e., 11 = 1. Therefore 21, + 1 = 21 + 1 _ m, xi is a solution of 
type A mod pm, and bi = m -1 = m - 1 = b. 

(b) If x is a solution of type B mod pm then, by Lemma 1 (ii), b < 1; hence, in 
(3), 1i _ b = [(m + 1)/2], i.e., 214 _ m. Hence xi is a solution of type B mod pm 
and bi = [(m + 1)/2] = b, by Lemma 1 (ii). 
This concludes the proof of Lemma 2. 

In view of Lemma 2, we define a solution-set mod pm as the set of all xi with 
xi _ x (mod pb), where x is a solution of (1) and b = b(m, x). We use the notation 
(x, b, m) for such a solution-set and say x is a representative of it. By Lemmna 2 
(ii), the value of b is independeAt of the choice of representative and, by Lemma 2 
(i), we may define unambiguously the type of a solution-set as the type of any 
representative. Let S(m) be the totality of solution-sets mod pm. 

We define an extension to mod pm+r of the solution-set (x, b, m) as a solution-set 
(xi, bi, m + r) with xi -x (mod pb). Clearly S(m + r) consists of just all exten- 
sions to mod pm+r of the solution-sets of S(m). 

THEOREM 1. (i) If (x, b, m) is a solution-set of type A, then it has a unique ex- 
tension, (xl, b1, m + 1) to mod pm+l; this extension is also of type A with 11 - 1 and 
b= b + 1. 

(ii) If (x, b, m) is a solution-set of type B, then (a) if m is odd either (x, b, 
m + 1) is the unique extension of (x, b, m) to mod pm+l or there is no extension to 
mod pm+i; (b) if m is even, the extensions to mod pm+l are just those (x + spb, 

b + 1, m + 1)for which 0 ? s < p andf(x + spb) = 0 (mod pm+l). 
Proof. For any integral s, 

(5) f (x + spb) = f(x) + spbf (x) + vplb, 

for integral v. 
(i) If x is a solution of type A then, by Lemma l (i), b = mi-1 and 2b > m + 1; 

hence, from (5),f(x + spb)-0 (mod pm+l) if and only if 

(6) p-mf(x) + sp-f'(x) 0 (mod p). 

Since p + p-1f'(x), (6) has a unique solution mod p for s, so say. Let xi = x + sopb; 
then the unique extension of (x, b, m) to mod p?+l is clearly (xi, bi, m + 1). 
Further, 1, = 1, by Lemma 2 (iii); hence m + 1 > 21, + 1 and so (xi, bi, m + 1) 
is of type A with bi = m + 1 - 1l = m + 1 - 1 = b + 1. 

(ii) In this case, by Lemma 1 (ii), b = [(m + 1)/2]. (a) If m is odd, then 
b = (m + 1)/2; hence b + 1 = (m + 1)/2 + 1 _ (m + 1)/2 + m/2 > m. Therefore 
in (5) f(x + 8pb f(x) (mod pm+ ). Hence if f(x) 4 0 (mod pm+l ) then (x, b, mi) 
has no extension to mod pm+l; if f(x)- 0 (mod pm+l) then, since m + 1 < 21, x is 
a solution of type B mod pm+l with 
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+ 1 
=- , since m is odd 

= b( n, x), 

i.e., in this case (x, b, m + 1) is the unique extension. (b) If m is even, then b = m/2. 
For any s, x + Spb is a solution of type B mod pm, by Lemma 2 (i), i.e., 
I' l I(x + spb) _ m/2. If f(x + spb)-0 (mod pm+l) then 

b(m+ 1, X+ Spb) = Max([-i +2 + 1]n+ 1-+') 

= Max ( ? 22, m + 1- 

mn +2 since . ' > 
2 2 

b + 1. 

I.e., the solution-set mod pm+1 containing x + Spb is just (x + spk, b + 1, m + 1). 
This completes the proof of Theorem 1. 

THEOREM 2. If (x, b, m) is a solution-set of type A then 

(7) f(x) + uf'(x) 0 (modpm) 

has a solution u, unique mod p" 21, and (x + u, 2m - 31, 2m - 21) is the unique ex- 
tension to mod p2m-21 of (x, b, m). 

Proof. Since (x, b, m) is a solution-set of type A, m > 21. Hence, since pm I f(x) 
and p' 11 f'(x), equation (7) has a solution for u, unique mod p2m-31. Further pImn-l U 

since, from (7), uf'(x) 0 (mod pm). By Taylor's theorem, 

f(x + u) )f(x) + uf'(x) (mod p2m-2) 

- 0 (mod piT- 2), by (7). 

Therefore x + u is a solution mod p2m21 and, since p = pml u,x X + u E (x, b, m). 
By Theorem 1 (i) the solution-set (x, b, m) has a unique extension (xi, b + 1, m + 1 ) 
to mod pm+l, also of type A; by induction it has a unique extension (X.21 , b + m - 21, 
2m - 21) to mod 2m - 21. Since x + u is a solution mod p2m-2C this concludes the 
proof of the theorem. 

4. Description of the Algorithm. The solution-sets of an integral polynomial 
f(x) mod pm form a tree with extension as the connective. For example, the solu- 
tion-sets of f(x) = (x + 1 ) (x2 - x + 6) (mod 2tm) are depicted in Figure 1. We can 
construct all the solution-sets by starting with the unique solution-set mod p0, 
namely, (0, 0, 0), and calculate the solution-sets mod pm+1 as the extensions of the 
solution-sets mod pm. For a solution-set of type A we may construct its extension to 
mod pN in about log2 N steps by the algorithm of Theorem 2. For solution-sets of 
type B mod pPZ we construct the solution-sets mod pm+1 by means of the criteria of 
Theorem 1. 
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(0, 0, 0) 

(2, 2, 2)* (1, 1, 2) 

(2, 3, 3)* (3 2, 3) 

(10, 4, 4)* (3, 2, 4) 

(10, 5, 5)* (7 3, 5) 

(42, 6, 6)* (7, 3, 6) 

(106, 7, 7)* (15, 4, 7)* (7, 4, 7)* 

(234, 8, 8)* (31, 5, 8)* (23, 5, 8)* 

FIG. 1. Solution-sets of (x + 1) (x2 - x + 6) 0 (mod 2m). The solution-sets of type A 
are indicated by *. 

5. Interpretation in the p-adic Field. The solutions of f(x) 0 O to arbitrary 
high powers of p correspond to the solution of f(x) = 0 in the p-adic field. In this 
interpretation a solution-set (x, b, m) corresponds to an interval in which f(x) is 
small in the p-adic valuation; specifically, I f(y)j, < p-m for I y - x |, < p-b. The 
relevance of the definition of type of solution-sets is indicated by Theorem 1. If 
(x, b, m) is a solution-set of type A then, by induction of Theorem 1 (i), there is 
a unique solution y of f(y) = 0 in I y - x |, < p-b. On the other hand, if (x, b, m) 
is a solution-set of type B then although I f(y) IP is "small" in the range I y - x IP < p` 
there may be no solutions of f(y) = 0 in this range, or one or more solutions. The- 
oremn 2 exhibits the operation of the Newton-Raphson algorithm. The computation 
of -f(x )/f'(x) corresponds to solving equation (7) to miodulus p . For computa- 
tional purposes we must be satisfied with solving the equation to modulus some suit- 
ably high power of p. Restriction of the algorithm to solution-sets of type A both 
guarantees that the iteration converges (in the p-adic topology) and indicates the 
"right" modulus in which to solve equation (7), namely p2m21. By "right" we mean 
that no greater modulus will guarantee a siialler value of I f(x' )P for the next 
iterate x . 

From the p-adic interpretation it also follows that there are no type B solutions 
for some sufficiently large modulus, unless the rational polynomial f(x) has a re- 
peated factor. For if (xn , b, n) is a convergent sequence of type B solution-sets then 
I f(x) Ip < p-n and I f'(x.)Jp ? p-' 

< 
p-n/2. Hence limn xn is a root of bothf(x) and 

f'(x). Further, the existence of a commoii root of f(x) and f'(x) in the p-adic field 
implies a repeated factor of the rational polynomial f(x) since the two discriminants 
are formally the same. 

6. The Search for Close-Packed Codes. The existence of a close-packed error- 
correcting binary code [2] requires integers x, r with 
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(8) fr(x) r!{1 + x + (2) + + 2 

The algorithm described in ?4 was programmed for the IBM 704 to search for solu- 
tions of fr(x) 0 (mod 2m). For all m, r with 2 _ r _ 20 and 0 _ m < 139 the least 
value of x with 

0 < x < 270, 

fr(x) 0 (mod 2t) 
and 

fr(x) $ 0 (mod 2m+1) 

was printed and also an indication of whether or not 

(10) x < r 2 

Finally it was determined for each value of r that there were no solutions of 
fr(x) 0 (mod 2140) with 0 < x < 270. Now if fr(x) = (r!).2k with 0 ? x < 270 

3then either k + s _ 140 (where 28 11 r!) or equations (9) hold with m = k + s. 
In the latter case inequality (10) must also be satisfied. For if not, then x > r 2m/r 
and hence fr(x) ? (x - r)r > rr(2m/r - 1)r > rr(3.2 m/r/4)r = (3r/4)r.2rn > 
(r!).2m > (r!).2. 

The only solutions of (9) and (10) found for 2 ? r _ 20 and 2r + 1 < x were 
x = 90, r = 2 and x = 23, r = 3. Hence there are no solutions of fr(x) = (ri ) .2k' 
for 2 < r < 20 and 0 < x < 270 other than 

(i) 0 - x < r for arbitrary r; these do not correspond to close-packed codes. 
(ii) x = 2r + 1 for arbitrary r; these correspond to the trivial r error-correcting 

codes of two code points of length 2r + 1. 
(iii) x = 90, r 2; this does not correspond to a close-packed code as shown in 

[1]. 

(iv) x = 23, r = 3; this corresponds to the Golay-Paige code of 212 code points 
of length 23 [1, 3]. 
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