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1. Introduction. It is well known that Milne-Simpson's method 

(1) Yn+2 = Yn + 
h 

(fn + 4fn+l + fn+2) 

should not be used for the numerical integration of y' = f(x, y) if ff < 0 along the 
true solution y(x) although the solution of (1) converges to y(x) for fixed finite x as 
h - 0 (see, e.g., [1]). In fact, rapid oscillations, with an amplitude increasing ex- 
ponentially as the numerical integration proceeds, will supersede the values approxi- 
mating y(x) and eventually destroy the meaningfulness of the computation. This 
"weak unstability" occurring with (1) and similar algorithms has been well 
analyzed (e.g., [1, p. 248 ff.]) and procedures have been suggested to weaken its 
effect (e.g., [2]). We will show in this paper that it is quite easy to completely elimi- 
nate its cause: The combination of a judiciously chosen predictor with the weakly 
unstable corrector constitutes a strongly stable algorithm if the corrector is not 
iterated. 

2. Analysis. Consider the k-step scheme 

(2) p(E)yn - ha(E)fn = 0, 
where p(z) := o a,z%, ak = 1; o(Z) := 

k 
4 -OZ; Eyn Yn+1 ;f f= f(xn , Yn 

(2) is called D-stable' or stable for h 0 if all zeros of p are in I z 1j5 1 and no 
multiple zeros are on I z I 1. (2) is of order p if, for a sufficiently differentiable 
function y, 

p(Eh)y(x) - hr(Eh)y'(x) = 0(h"+ ), 

where Ehy(x) := y(x + h). 
It is well known (e.g., [1]) that the sequence Yn generated by a D-stable scheme 

(2) of order p > 1 converges in an obvious sense to the solution y(x) of y' = f(x, y) 
as h -> . It is more difficult to predict the behavior of the yn for finite h as weak in- 
stabilities may occur. 

Denoting by r,(H), v = 1(1 )k, the zeros of the polynomial 

(3) <o(z, H) := p(z) - Ho(z), 

we know from [1, p. 238], that for a scheme (2) of order p there is one zero, which 
we will always denote by p1(H), which satisfies 

(4) p1(H) = el + O(Hv+l). 

For a given value of H (real) we will call a D-stable scheme (2) strongly stable if2 
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I For Dahlquist-stable (cf. [31). 
2 See Remark at the end of this section. 
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(5) 1 t'(H)j-< ?1(H), v = 2(1)k, 

and weakly unstable otherwise. 
Each D-stable scheme is strongly stable for H 0, by continuity there will be a 

largest number H ?_ 0 and a smallest number H- _ 0 such that (2) is strongly 
stable for each H from the stability interval [H-, H+].2 

It is evident for constant g(x) := fy(x, y(x)) and confirmed by experience for 
variable g that the solution Yn of (2) simulates the behavior of y(x) if hg re- 
mains within the stability interval. For a weakly unstable scheme (e.g., Milne- 
'Simpson's method (1)) H = 0 and the method should not be used for g < 0. 

If f3k 7 0, (2) defines yn+L implicitly and is usually replaced by the predictor- 
corrector scheme3 

k-i k-i 

Yn+k = - O*vYn+v + h , 8, fnurvX 
(6) k-1 k-1 

yn+k =-E?a!vy,v + h( I fjn+v + ,kf(X n+k )) i 1(1)m. 
+ v=O +=O 

A simple computation shows that for the algorithm (6) the polynomial (3) is trans- 
formed into4 

(7) pm(z, H):- (1 Bm)(p(z) -Ho(z)) + Bm(1 - B)(p*(z) - Ho*(z)) 

*kXp(Z) := J:kO aZ,k*- ()_ k-1 *Pv.b with B =H#3k, p( Zv=0 av*ZPa = 1, k*Qr := P- I3,,ZI Obviously 
limm-0 (Pm(z, H) = (p(z, H) if I B I < 1. 

Assume that the predictor is of order q _ 0. It is clear from (3), (4), and (7) 
that the zeros tVm of Vpm satisfy (after a suitable ordering) 

()1m(H) eH + O(Hp+') + O(Hq?m+'), 
(8 

(H) -,(H) + 0(Hm). 

For all weakly unstable schemes of practical importance the violation of (5) for 
H < 0 is a first-order effect in H, hence only the zeros t, of V' may possibly not 
share the undesirable behavior of the r,.' Therefore we may restrict our consid- 
erations to the case m = 1; we will-for given weakly unstable schemes-attempt 
to select (p*, a*) such that the stability interval for sol has H = 0 as an interior 
point. 

Remark: Some authors (e.g., [5]) replace (5) by I r,(H)l ? 1 in the definition 
of a stability interval. This seems not appropriate since, e.g., a 2-step scheme with 
;2(H) )- -1 - H/2 + 0(H2) will also generate oscillations growing exponentially 
relative to the true solution if used for y' =-y. 

3. Selection of the Predictor. Fromii now on we will onily consider the poly- 
nonuial p1(x, H) and its zeros r,I(H), v = 1 ( 1 )k, hence we will omit the superscript 1. 
Furthermore we define P,o := t,(0). 

3If the predictor reaches back farther than the corrector the degree k of the corrector has 
to be formally raised accordingly. 

4This assumes a P(EC)mE algorithm (cf. [4]); for a P(EC)'" algorithm the situation is 
more complicated. See footnote 5, however. 

6 Since (8) holds equally for P(EC)m algorithms (see [4]) our conclusion is also true for this 
case. 
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If I t,o I < 1 for a certain v > 1, (5) has to hold in a full vicinity of H 0 by 
continuity. Therefore it suffices to consider v G W {v: 2 < v < k, J = 11. 
For v E W, let 

(9) 1 ,(H)I = 1 + AH + B,H2 + 0(H3). 

As p > 2 in all cases of interest, (4) and (5) yield the following necessary condition: 

(10) 
(a) A= 1, 

forv E W. 
(b)B, ? , 

If the equality is excluded in (lOb), condition (10) is sufficient as well to guarantee 
a stability interval with H- < 0, H+ > 0. (For B = -1, the third order terms would 
have to be investigated.) To find expressions for the A, and B, we derive, from 

,pI(z, H) = [p(z) - H(u(z) -3kp*(z)) -H2/ku*(Z)](1 - B), 

(i11i) t,(H) = o + H , + H [-p"Tv /2p,' + T,T, + k Pv a, I/pV + 0(H), 
Py 

where r(z) := a(z) - #kp*(z), the prime denotes differentiation, and p, := p(r,o), 
etc. p,' $ 0 for a D-stable scheme and v E W. Let ro = eSWt, then (10a) becomes 

(12a) Re {e-tw T} = 1. 

Since r, is linear in the coefficients a, * of p for given p, a, condition (lOa) takes 
the form of a linear relation between the a,* (which are assumed real) for each 
v E W. 

Condition (lOb) becomes an inequality which is quadratic in the a,* and linear 
in the 3*: Using (12a) we have 

1 ~, 2 

(12b) Re {etwP},,1 + - - p 1, 

where V/, denotes the coefficient of H2 in ( 11 ). Since the corrector must not be iterated 
according to our analysis, the order q of the predictor must be no less than p 1 
if the original order p of the corrector is to be maintained for the predictor-corrector 
scheme (6) with m 1 (see, e.g., [1, p. 259 ff.]). The requirement of a certain order 
q for the predictor generates q + 1 homogeneous linear relations between the 
a,* and f,*. Thus the following procedure seems appropriate for the determination 
of a suitable (p*, u*) for a given weakly unstable scheme (2): Evaluate (12a) in 
terms of the a,*, then express p* and &* in terms of the free parameters (if any) 
which are left after accounting for the order relations and (12a). Then interpret 
(12b) as a restriction in the space of these free parameters (or check its validity), 

Remark: The same considerations can be carried through for P(EC)1 algorithms. 
However, the details are more involved. 

4. Application. For Milne-Simnpson's 2-step scheme (1) we have p = Z - 1,. 
a = (Z2 + 4z + 1)/3, p = 4, and 2o = -1. As we have to require q = 3, it seems 
futile to look for a stabilizing predictor with k = 2 since the order relations alone 
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determine p*, a* in this case: 

(13) p z + 4z-5, a* =4z + 2. 

Yet by a marvelous coincidence this is a predictor which does the trick: 

1a(-1) + 32P (-1) +1, 
p'(- 1) 

Af1)+ _ T2)= 1 

Therefore the algorithm 

Yn)2= -4Yn+l + 5yn + 2h(2fn+l + fn)) 

(14) h 
Yn+2 = Yn + - 

(f(?)2 + 4fn+l + fn) 

is a genuine 2-step method of order 4 which is strongly stable for arbitrary H (as it 
turns out), i.e., it cani be safely used for g < 0 as well as for g > 0. Numerical 
results which have been obtained with (14) are shown in Section 5. 

Admitting 3-step predictors, we could at first try to achieve q - 4: All predictors 

P* = Z + (8 + ao*)z2 - 9z - ao, 

* = [(17 + ao )z2 + (14 + 4ao*)z - (1 - ao*)]/3 

are of order 4 (see, e.g., [6, p. 201]), so it seems that we have one parameter left 
for the satisfaction of (12). However, upon introduction of the above p* into (12a), 
the parameter ao* drops out and the necessary condition cannot be satisfied: There 
is no stabilizing 3-step predictor of order 4. Among the 3-step predictors with q _ 3 
the followiiig one-parameter family is found to be stabilizing: 

* z3 + (4 + ao*)Z2 - 5z*- ao X0 
(15) ao > - 3.~)Z-o, 

(15) a [(12 + ao*)z + (6 + 4ao*)z + ao*]/3, 

For ao* =i 0, which is well within the stabilizing regioni, we recover our 2-step pre- 
dictor (13). Since the error term of (15) is h4yIv/6 independently of ao* there is no 
indication why one should not choose the simpler predictor (13) and discard the 
3-step predictors. 

5. Comparison with Runge-Kutta, Numerical Results. Iii the case of an equa- 
tion y' = gy, g = const, the relative discretization error 

er(xn, h) := (Y.(h) - Y(Xn))/Y(Xn) 

will behave approximately6 like Cg5(x - xo)h4 with 

T ?T_ for the exact solution of ( 1), 

(16) C = - for the stabilized schenme (14), 

T - o for the classical Runge-Kutta method. 

6 (16) takes into account the first term of the asymptotic expansion of the discretization 
error under the assumption that the initial errors are 0(h6). For the values of C, see, e.g., [1l. 
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TABLE 1 

Relative discretization error er(x, h) for y' -Y 

x =10 

(14) R.-K. R.-K. 
x h = 2-2 h = 2-1 h (14) (with 2h) 

2 .000 244 .001 585 2-1 .0357 1363 .2113 1609 
4 493 3 172 2_2 .0012 4629 .0079 4948 
6 744 4 762 2-3 6407 4 0130 
8 995 6 355 2-4 377 2260 

10 1 246 7 949 2-5 16 138 
12 1 498 9 547 2-6 1 7 
14 1 748 11 152 
16 1 999 12 786 
18 2 251 14 390 
20 2 503 16 002 

TABLE 2 
Relative discretization error er(x, h) for y' = -y2 

_ _ _- - - ~~~~~~~~~~x=10 
(14) R.-K. 

x h = 2-5 h = 24 h (14) R.-K. (with 2h) 

5 36.7-10-9 34.9-10-9 2-1 .0014 52234 -.0053 07526 
10 20.0 19.2 2_2 96792 + 18899 
15 13.9 13.4 2-3 5657 4237 
20 10.6 10.4 2-4 334 299 

2-5 20 19 
2-6 1 1 

Obviously, the stabilization of (1) has to be paid for by a loss in accuracy such 
that the stabilized version of (1) is less accurate than R.-K. However, basing the 
comparison on an equal number of evaluations of f for a given interval of integra- 
tion (see [4]) we find that the error of (14) is only W of that for R.-K. Hence we may 
expect that (14) is a rather effective fourth order method for the numerical integra- 
tion of ordinary differential equations. 

The following differential equations were solved by the predictor-corrector 
scheme (14) and by R.-K.: (a) y' = -y, (b) y' = -y2, each with y(O) = 1, 
for x ? 20. The value of y(h) for scheme (14) was computed by one execution of 
R.-K.; this introduces ani error of 0(h5). 

It is clear that the usual Milne-Simpson algorithm would have failed on both 
equations over such a long interval.7 With algorithm (14) not the least sign of an 
oscillation or an undue round-off accumulation was found on either differential 
equation. As to be expected from (16), for eq. (a) the error with (14) was less than 

7Although for eq. (b) the oscillations will grow only like h(x + 1)818 relative to the basic 
discretization error, this constitutes an intolerable disturbance for large x. 
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20% of that with R.-K. (and equal effort) throughout the interval and for all 
stepsizes used. Some numerical values are shown in Table 1. 

For the nonlinear equation (b), the errors of (14) anid R.-K. were practically 
equal for small stepsizes. For very large steps R.-K. was poorer, with decreasing h 
the discretization error changed its sign and became smaller (see Table 2). (This 
effect is caused by the complicated error terms of R.-K. which contain various 
derivatives of different order.) Due to this unsystematic behavior of the discretiza- 
tion error Richardson-extrapolation was not applicable for R.-K. while it worked 
well for (14) where the error decreased like ho approximately for large and small h. 
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