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and (ii) in the case of rhombic primitive period-parallelogram 

(6) a28(c') = (-I)8(2c)28a28(c) (Cc' = 4). 

The computation has been carried out up to 2s = 50 with adequate guarding 
figures provided for a4 and 06 . The values are then rounded off to 16D. Individual 
check is made on the last two coefficients by direct summation of the double series. 
The results up to 2s = 20 are shown in Tables 1 and 2. In Table 2, the values of 
04 and of are not included, which may be found in reference 2. The complete table 
is deposited in the UMT file in the office of the journal. 
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A Method for the Computation of the Error 
Function of a Complex Variable 

By Otto Neall Strand 

Abstract. This paper presents a method of computing erf z (2/\/7r) fo e u du, 
where z is complex. It is shown that erfc z- 1 - erf z has no zeros in the right-hand 
half plane. An estimate of I erfc z I is derived. 

The error function of a complex variable, denoted by erf z, is defined by the 
equation erf z = (2/V/ir )fz eu2 du, where z is complex. This function arises in 
many problems of physics and engineeriing. Several methods [1], [2], [3] have been 
devised for the computation of erf z and closely-related functions, and several tabula- 
tions [4], [5], [6] have been made. The method to be described below has two features 
which make it relatively simple to use: (1) the phase enters in a simple explicit 
manner; and (2) the major portion of the computation consists of the accumulation 
of two series of positive terms for which each term (after the first) may be calculated 
by a simple recursion without the use of transcendental functions. For the particular 
FORTRAN double-precision programs which were written for comparison, the average 
computing time for the method of this paper was found to be approximately I 
of that for Salzer's first method [7] for an equally-spaced grid of points throughout 
the region defined by 0 < I z i < 6.6 and 0 < arg z < r/2. The relative difference 
between results from the two methods was less than 10W3 throughout this region. 

Since the relations erf (-zo) = -erf zo and erf (zo) = erf (zo) may always be 
employed to reduce the computation to one involving zo in the first quadrant, the 

Received May 1, 1964. 



128 oTrTo NEALL STRAND 

following derivation is restricted to the computation of erf zo, where zO = xO + iyo, 
xo > 0 and yo _ 0. The case xo = 0 is not covered by this method. 

By Cauchy's theorem: 

(1) erfc zo 1-erf zo = -f e- du, 
\/7r c 

where C is the hyperbola xy = xoyo = vo for which the integrand has constant phase, 
described in the direction of increasing x from x = xo to x = m. Reduction of the 
line integral to definite integrals gives the result 

(2) erfc zo = H1 cos 2vo - yoH2 sin 2vo + i[-H1 sin 2vo - yoH2 cos 2vo], 

where 

H 2 
f [(2 Vo)] Hi = o/ I exp[ 2 ?)dx, 

H2 = f1 exp - -x) dx. 

WVe expand the integrands of H1 and H2 in series as follows: 

H1 = 27 | e_ (E (vo)2fl) dx, 

H2 - 2x> C e0 (no nf X2n+2) dx 

Since all terms in the series are positive, term-wise integration can be justified by 
the Lebesgue Monotone Convergence Theorem [8], so that 

00 

H1 = ZYnV? n 

n-0 

(5) 00 

H2 = xoE (n + 1)Yn+1Vo 2n 

n-0 

where 
00 _X2 

(6) n! e z 2 dx, n = O, 1, 2, 

Since yo = erfc xo, it can be obtained from existing methods. To obtain the other 
,y's we integrate Yn+l by parts to obtain 

2 10 \7 

(7) yn+l = (2n + 1)\/7r (n + 1)! X2n+1 n + 1 7Yn]J n = O12it 2, 
The method of computation consists of computing the series (5), where the co- 
efficients are obtained recursively by (7). The values of Hi and H2 are then sub- 
stituted into (2 ) to obtain erfc zo, from which erf zo is obtainable by ( 1 ). 

Although the following results are of some interest, they do not pertain directly 
to the method of computation. By (2), 

(8) 1 erfc zO I = -V(H12 + yO2H22). 
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Therefore erfc z has no zeros in the right-hand half plane. This property is 
evident in examining the contour charts due to Laible [9]. It can be shown [10] that 

j e dx < e for xo > 0. 
wo ~~2xo 

Therefore 

H1 < exp (yo2 -Xo2) 

(9) XoV7r 

H2 < exp (Yo2 - Xo 2) 
xo 2/7r 

Combimation of (8) with (9) gives the following estimate for the absolute deviation 
of erf zo from 1: 

(10) j erfc Zo I < e . \/(l + yo2/xO2). 

This estimate may be useful in some cases to determine if erf zo may be approximated 
by 1 with sufficient accuracy. 
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