
Approximation of a Class of Wiener Integrals* 

By Lloyd D. Fosdick 

1. Introduction. Many physical problems can be formulated in terms of the 
conditional Wiener integral of the functional [1], [2] 

( 1.1 ) F(x) = exp [-f V(x(r) ) dr], 

and since evaluation of this integral by analysis often cannot be done, it is of some 
practical interest to investigate the possibility of numerically evaluating this 
integral. Such a calculation is expected to require an enormous amount of arithmetic 
since it involves the evaluation of a k-fold integral where k >> 1; an exact evaluation 
requires going to the limit k -> o. Consequently, it is taken for granted that the 
services of a large computing machine may be required. 

In this paper we derive an approximation formula for the conditional Wiener 
integral of the functional F(x) in Eq. (1.1) that may be useful for machine calcula- 
tions. The main result is the formula 

+x0 
+00 

+00 

(1.2) ElF(x) I x(1) XI = A L Fkgkkdxldx2 ... dxk1 + Ak, 

where E{F(x) I x( l) -XI stands for the Wiener integral of the functional F(x) 
with the end point conditions x(O) = 0, x(1) = X; Fk is the functional F(x) 
when x(r) is a piecewise straight line with breaks at 0 < Tr < T2 < . . . < Tk-1 < 1, 
and ri+j - = 1/k for all i; gk is given by 

(1.3) gk = ft (1 - 1 j V"(xi-1 + (xi - xi-1)r)r(1 - r) dr), 

where x-= x(ri), XO = 0, Xk = X, and VX "(y) = d2Vldy2; Wk is the Gaussian weight 
factor 

(1.4) Wk =fl( ) exp ( k(x - 

A is the normalization factor 

(1.5) A = V(27r) exp 2 

and, finally, Ak , which is the error when the first term on the right side of Eq. (1.2) 
is used as an appoximation for the Wiener integral, is bounded above and below by 
an expression which is 0(1/k2). A related result with an error term 0(1/k3) is also 
given. 
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A simple way to describe the derivation of the above results is by analogy with a 
well-known technique for the Riemann integral. In these terms our approach is 
simply to subdivide the interval of integration and expand the integrand in a Taylor 
series in each subdivision. Truncation of the Taylor series and integration of the 
resultant polynomial yields the approximation, and consideration of the remainder 
term yields an estimate of the error. 

Our second-order formula seems to be simpler than Cameron's "Simpson's 
Rule" [3] which has the same accuracy, 0(1/k2), hence it may be more suitable for 
actual machine calculation. In any case, since our approach is different from 
Cameron's it may be of some interest to others concerned with developing approxi- 
mation schemes for Wiener integrals. Finally, we wish to point out that the tech- 
nique used here can be continued in an obvious way to obtain more accurate 
formulas. 

2. Preliminary Remarks on the Conditional Wiener Integral. The condi- 
tional Wiener integral E{F(x) I x(l) = X} may be defined as follows [1]: 

(2.1) EIF(x) I x(l) = X} = limnAf 1?0 . Flwfl dxldX2 ... dxn-X 

where A, Fn , and wn are the same as in Eq. (1.2) with n replacing k. We will assume 
that V(x) is continuous and bounded from below; these conditions are sufficient to 
insure the existence of the limit in Eq. (2.1). Later we will assume the existence and 
continuity of certain derivatives of V(x). 

The manner in which the r-interval is partitioned in passing to the limit in Eq. 
(2.1) is arbitrary. To establish our approximation formulas it is partitioned so that 
k - 1 points , T2, ** ,Tk-1 are fixed and we make use of the formula 

(2.2) EIF(x) Ix(l) X} = A f Ikfwk dxldX2 ... dxk-l, 

where 
+X0 +X0 +00 

(2.3) Ik = lim C0k f . f Fn~ n dxk+ldxk+2 . . . dXn-1 

and 

Xk = Xn = X. 

For definiteness we can assume that this partitioning is realized by repeated 
halving (i.e., ri = 1/2, r2 = 1/4, -r3 = 3/4, m4 = 1/8, * .); then, for a proper inter- 
pretation of Wk, Eq. (1.4), it is necessary to relabel the points so that for neighboring 
points r7, Tj with ri < rj, the relation j = i + 1 is satisfied. 

Eq. (2.2) is referred to a's the mixed integration formula. This formula is used to 
obtain a family of approximations to E{F(x) I x(l) = X} from approximations for 
Ik. The latter are formed by expansion of the functional in a generalized Taylor 
series about the piecewise straight line broken at the points 0 < rl < r2 < ... 

< Irk-1 < 1. This is particularly convenient because of the way the functional can 
be factored. Since the Wiener integral for any term in this series may be evaluated 
analytically we are thus led to an approximation for Ik when the series is truncated. 
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This is treated in detail in the next sections. 
Though it is aside from our main concern here, a remark about the evaluation of 

the (k - 1)-fold integral on the right side of Eq. (2.2) may be of interest. Let us 
suppose that an approximation for Ik has been obtained; in general, it will depend on 
Xi, x2, *... , xk-1 and the (k - 1 )-fold quadrature in Eq. (2.2) will have to be per- 
formed numerically. If this is done by Monte Carlo sampling it is worth noting that 
the constraint at the right endpoint (i.e., x(1) = X) causes no special difficulty. 
Monte Carlo sampling would consist in selecting (k - 1 )-tuples {xi , *... , Xk41I 

according to the probability Wk where xo = 0 and xk = X. The elements 
X1 X X2 X... I X*k- can be picked one at a time by repeated application of the so-called 
"interpolation formula" [4]: Let xa and xc, Ta < re be given, then Xb for Ta < Tb < Tc 

may be represented by 

(2.4) Xb = Xa(Tc - Tb) + XJTb TO Or(Tb - Tra) (Tc - Tb) + 
XeTba 

T) 
(Te - Ta) 

1 

where t is a reduced Gaussian random variable.! Hence, with the help of a generator 
for Gaussian random variables, the (k - 1)-tuples can be selected in a straight- 
forward way. 

3. The Generalized Taylor Series. The important material in this section is 
taken from a paper by Graves [5]. We begin with the definition of the nth variation 
of the functional F(x). The space of continuous functions x(r) is denoted by C. 

DEFINITION. We say that F(x) has an nth variation at xo E C in case for every 
Ax E C the function of the real variable r, F(xo + r5x), has an nth derivative at 
r = 0. This nth derivative at r = 0 is denoted by 35F(xo, Nix); we denote the nth 
derivative at r by 3iF(xo + 76x, AX). 

Let us consider an example related to our own application. Suppose 

(3.1) F(x) = exp( X( ) 

then the first two variations at xo are 

(3.2) 5'F(xo, Ax) = -4 (j Xo3Q(T)bx dT) F(xo), 

and 

(3.3) 52F(xo, 5x) = 16(1 XO3(T)x dT) F(xo) - 12 X(f2X2(T)(&v)2dT F(xo). 

The generalized Taylor's Theorem, in a more restricted form than in Graves' 
paper, is: 

THEOREM. Suppose that F(x) has an nth variation at every x E C. Suppose that 
for every xi , X2 E C, the function of the real variable r, 38F(xi + (X2 - xl )r, x2 - Xi), 
is bounded on the interval (0, 1) and its set of discontinuities has measure zero. Then, 
for every xl, W2 E C, we have 

n-1 

(3.4) F(x2) = F(x1) + Z iF(xl, X2 - xl)/i! + Rn(xi, X2), 

1t = 0. 2 1. 
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where 

(3.5) Rn(xxx2) = f anF(xi + (X2 - xl)r, x2 - x) (1 ) dr. 

Once again let us suppose that F(x) is given by Eq. (3.1), then with this theorem 
and Eqs. (3.2), (3.3), we have, for example, 

(3.6) F(xi + ax) = F(xi) (1 -4 f X136x dr + 8(f X136x dT)- 6 I X12(6X)2 dr) 

+ Ra(x3, xi + 6x), 
where 

(3.7) R3(xi, xi + ax) = f 63F(xi + rAx, ax) (1- r)2, 

and 

68F(xi + rbx, 5x) = F(xi + rbx) (-64 (f (xi + rbx)'5x dT) 

(3.8) + 144 (f (xi + r6x)35x dr) (f (Xi + rbx)2(5X)2 dT) 

- 24 (xi + r6x)(6x)3 dr). 

It is, of course, to be understood that here xi stands for a particular function of r. 

4. Normal Form of the Conditional Wiener Integral. In the next section we 
will make use of the fact that the conditional Wiener integral is invariant with re- 
spect to the change of variables x(r) - y(Tr), where 

(4.1) y(T) = x(T) - (aT + A), 

and a and ft are arbitrary constants. Specifically, this means that 

(4.2) E{F(x(Tr))Ix(1) =X 
= E{F(y(Tr) + ar+13)j y(O) = -, y(l) = X - a- 

where, on the right side, y(r) is regarded as the variable of integration. Eq. (4.2) is 
easily obtained from the following considerations. In the Gaussian weight factor 

ln112 _ni___ i__x)2) 
(4.3) Un(x) = II 27 exp ( 2 

replace x, by ys + acri + ,3 for i = 0, 1, * * , n, then this becomes 

(4.4) Cxn(Y + ar + A (I(2)exp,( Ei2y )) exp (-aX + 2 ) 

or 

(4.5) Wn(y + ar+ ) = Wn(y) exp (-aX + ) 
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The Jacobian of the transformation x -* y is unity, hence 
X2\ +o +co +co 

V/(27r) exp (.j) L7 f * Fn(x)w (x) dxidx2 . . . dX.- 

(4.6) = V(2r) exp ((X - a)2 ) 1 
t+0 

L7. Fn(y + ar + fi)wn(y) dyidy2 ... dYn- 
co 

for all n and therefore in the limit as n --> o, thus giving the relation cited in Eq. 
(4.2). It is to be noted that this result means that a given Wiener integral subject to 
arbitrary endpoint conditions is equal to one with endpoint conditions x(O) 0 0 
and x(1) = 0 when the variable of integration is changed according to Eq. (4.1). 
When the endpoint conditions are x(0) = 0 and x(I) = 0 we will say that the 
integral is expressed in normal form. 

Another useful property that is easily verified is that the change in variables 

(4.7) r k(r + ro), y(r) -> x/ky(r) 

leaves the form of the Wiener integral unchanged. This means that the origin of the 
Ir-nterval is arbitrary and the length of this interval can be changed by making a 
corresponding change in the magnitude of y(r). 

5. The Approximation for Ik. The functional in Eq. (1.1) can be factored: 
k 

(5.1) F(x) = lfi(x), 
i=l 

where 

(5.2) fi(x) = exp (-4 V(X(T)) dr) 

It follows that Ik , Eq. (2.3 ), can be expressed as a product of conditional Wiener 
integrals 

k 

(5.3) Ik = I|Effi(x)J x(Tri-) = xi, x(ri) = xi), 

where the r-interval for the ith factor isri -ri- i. 

Let us now fix attention on an arbitrary factor in this product and for conven- 
ience introduce new variables 

(5.4) - = k('r 

(5.5) y(n) = v/k(x(r) - (xi - x1 - x-,), 

which put the factor in normal form; i.e., we will consider the factor 

E{fi(y)I y(l) = 01, 

where 

(5.6) fi(y) = exp ( p v( k+ Si(r)) d)X 
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and 

(5.7) iq) = (xi - xi-l)f + xi-l 

We will assume that the conditions of the generalized Taylor Theorem are satis- 
fied for n = 4, and that 

- V(ry(n) + si(,q)) dr4 

is a uniformly continuous function of q for all xi. It should be remarked that y(nq) 
is a uniformly continuous function of , because of the fact that the Wiener measure is 
entirely concentrated on the continuous functions y('i) which satisfy the Lipschitz 
condition 

(58) [ ~~~y(n + h) - y() I < c 1(h log h 

for all 0 < 1 - h and for h < H(c) where c > 1 [4]. The uniform continuity 
condition is imposed so that the order of differentiation with respect to r and in- 
tegration with respect to n may be interchanged. Expressing ft(y) as a Taylor series 
about y = 0, one finds 

fi(y) = fi(O) (1- 2 V'(si)y dq 

+ 1 (1 (f V'(si)y dq) - V " 
f V(si)y2 dq) 

+ 1 (_-1 (f V'(si)y dq)) 

+ 3 (f V'(si)y do) (f VI"(si)y2 dq) 

-1(I1V"'(si)y3d + R4(0, y), 

where si(q) si and all terms up to the third variation of the functional are explicit. 
Now we will neglect the remainder term, R4(0, y), and use the resulting approxima- 
tion fi*(y) for fi(y) as the integrand in the Wiener integral; i.e., we will calculate 

Effi*(y) I y(l) = 01, where 

(5.10) fi*(y) = fi(y) - R4(0, y). 

This calculation is easily made after the order of integration is changed and the 
Wiener integration is executed first; the result is 

El fi*(y) I y(1) = 01 

= f (0) 1 + ; f p V'(Si(l1))V'(Si(02)) 'in(l - 12) dn1dn2 
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To arrive at this result we have used the well-known relation2 

(5.12) E{y('qi)y(_2)J y(1) = 0} = lql(l - 212) (X1 < X2), 

and the fact that the integral of a product of y(-q)'s containing an odd number of 
factors is zero, specifically, 

(5.13) E{y(-q)| y(l) = 0} = 0, 

(5.14) E{y(21l)y(212)y(213)I y(l) = 03 = 0. 

The interchange of the order of integration is justified as follows. First of all, 
the integrals on the right side of (5.9) exist by virtue of our initial assumptions. Now 
if Cy is the space of continuous functions y(-q) (y(O) = 0, y(l) = 0) and T is the 
interval (0, 1) on the real line, the functions y(-), y(l)y(212) are integrable in the 
product spaces Cy X T, Cy X T X T, etc., and therefore so are V'(si)y(q), 
V'(si(nl))V'(si(12))y(2l)y(n2), etc. It then follows from Fubini's theorem that the 
order of integration can be changed. 

In Eq. (5.11) we drop the term of higher order in 1/k to obtain 

(5.15) [Effi*(y) I y(l) = ]* f() (=- 1Mj V"(si)21(1 -x) d). 

This is taken as the basic approximation for Effi(y) I y(l) = 0} and when it is 
used in Eq. (5.3) it provides an approximation for Ik which then, with the help of 
Eq. (2.2), yields an approximation for E{F(x)I x(1) = X}. 

The latter approximation is just the first term on the right side of Eq. (1.2). 
Now we want to examine the nature of the second term AAk on the right side of Eq. 
(1.2) which represents the error; it will be shown that, for large k, 

(5.16) AA ? . 

From Eqs. (5.10), (5.11), and (5.15), 

E{fi(y) I y(l) = O} - [E f*(y) y(l) =)0}* 

(5.17) -E{R4(0, y) I y(1) =0} 

+ Vj?0 f f2 V'(Si(211))V'(Si(n2))211(1 - n2) d211 d21. 

The remainder RJ4(0, y) contains the fourth variation, 34fi(ry, y), of the functional 
and a short calculation shows 

(5.18) 64f (ry, y) f V(Iv ) + sq(21)) Y4(-1) d-1 + ?( < 

Hence the error in the basic approximation, Eq. (5.15), may be written 

(5.19) Js= Effi(y)| y(l) = 0} - [E{fi*(y)| y(l) = 0}] 

(5.20) = 

2 Easily derived from Eq. (2.4). 
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where h, as a function of k, is bounded. The approximation used for Ik is 
k 

(5.21) Ik* = I [E{fi*(y) I y(l) = o0l} 
i=i 

(5.22) = 1k JjI~ [1 - k3E{fi(y) I y(l) = 011 
hence 

(5.23) Ik -Ik* Ik)i(k), 

where iAj(k) = 0(1/k2). Finally, Ak is given by 
e +X +X0 +00 

(5.24) Ak = A ... Ik4i(k)wk dX1dx2 dXkl 

which is also 0(1/k2) because of the character of 4ti(k). 
In an entirely analogous way higher-order approximations may be derived. For 

example, corresponding to the basic approximation (5.15), one can derive the fol- 
lowing approximation for Effi(y)l y(l) = 01: 

Elfi*(y) I y(l) = 01 = f(0) 1- 2 L V"(si)t(1 -v) d7 

1 1 'O2 

(5.25) + k f f Vi'(8i) V21(S'),1(1 - ) deq dn2 

- 413 j 
( _ 

-)2 dq1). 

The error in the approximation (5.25) is 0(1/k4), and it leads then to a total 
error in the approximation for E{F(x) I x(1) = XI (analogous to Ak above) which 
is 0(1/k3). 

6. Practical Considerations. We conclude with two brief remarks about the 
application of the above formulas in a machine calculation. It was pointed out 
earlier, in Section 2, that xi , X2, I * I Xk-1 can be chosen one at a time in a Monte 
Carlo calculation. With each choice it is possible to calculate the factor 
Etf *(y) I y(l ) = 01 (or the corresponding higher approximations), and so one can 
arrange the calculation of Ik* in a simple way without requiring a vast amount of 
intermediate storage when k is large. 

It would be wasteful of time in most computers to literally calculate each factor 
Elfi*(y)l y(l) = 01. A more efficient scheme is to accumulate the sum of the 
integrals 

k 1 

(6.1) Sk -k E V(si) do 
ki=1 

and then form exp(Sk) to get the contribution from the product of fi(O)'S. This 
must be multiplied by Ilk- (1-( - /2k2)f0' V"(s>(1 - q) dt), but if we are willing 

3V'(Si) a V'(Si 
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to admit a slightly larger error we can, of course, use the approximation 

(6.2) ~~~~kk (6.2) I(1 k2 _i 1 - k1 E ai 

without changing the order of the error term; in most computers this approximation 
should result in a significant saving of time, since multiplication can be expected to 
take at least twice as much time as addition. 
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