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An efficient method for the calculation of the interactions of a 2' factorial ex- 
periment was introduced by Yates and is widely known by his name. The generaliza- 
tion to 3' was given by Box et al. [1]. Good [2] generalized these methods and gave 
elegant algorithms for which one class of applications is the calculation of Fourier 
series. In their full generality, Good's methods are applicable to certain problems in 
which one must multiply an N-vector by an N X N matrix which can be factored 
into m sparse matrices, where m is proportional to log N. This results inma procedure 
requiring a number of operations proportional to N log N rather than N2. These 
methods are applied here to the calculation of complex Fourier series. They are 
useful in situations where the number of data points is, or can be chosen to be, a 
highly composite number. The algorithm is here derived and presented in a rather 
different form. Attention is given to the choice of N. It is also shown how special 
advantage can be obtained in the use of a binary computer with N = 2' and how 
the entire calculation can be performed within the array of N data storage locations 
used for the given Fourier coefficients. 

Consider the problem of calculating the complex Fourier series 

N-1 

(1) X(j) = EA(k)-Wjk, j = 0 1, * ,N- 1, 
k=0 

where the given Fourier coefficients A (k) are complex and W is the principal 
Nth root of unity, 

(2) W = e2TiIN 

A straightforward calculation using (1) would require N2 operations where "opera- 
tion" means, as it will throughout this note, a complex multiplication followed by a 
complex addition. 

The algorithm described here iterates on the array of given complex Fourier 
amplitudes and yields the result in less than 2N log2 N operations without requiring 
more data storage than is required for the given array A. To derive the algorithm, 
suppose N is a composite, i.e., N -r-r2 . Then let the indices in (1) be expressed 

j - jirl + jo , O = 0, 1, , X r, - 1, Ji 0, 1, X r2- 1, 
(3) 

k = kir2 + ko, ko = 0 1 ,**X r2 - 1, kl-O 1, *** r,-1 

Then, one can write 

(4) X(j1, jo) - E EA(k1, ko).Wjklr2WjkO. 
kA ki 

Received August 17, 1964. Research in part at Princeton University under the sponsorship 
of the Army Research Office (Durham). The authors wish to thank Richard Garwin for his 
essential role in communication and encouragement. 

297 



298 JAMES W. COOLEY AND JOHN W. TUKEY 

Since 

(5) WjkTr2 = WJokir2 

the inner sum, over k1 , depends only on jo and ko and can be defined as a new array, 

(6) Al(jo, ko) -E A(k1, ko) .W1okir2. 

The result can then be written 

(7) X(ji, jo) - EAi(jo, ko) . W(jlrl+o)ko. 
ko 

There are N elements in the array AI, each requiring ri operations, giving a total 
of Nrl operations to obtain A1. Similarly, it takes Nr2 operations to calculate X 
from Al. Therefore, this two-step algorithm, given by (6) and (7), requires a total 
of 

(8) T = N(r, + r2) 

operations. 
It is easy to see how successive applications of the above procedure, starting with 

its application to (6), give an m-step algorithm requiring 

(9) T =N(ri+r2+ - +rm) 

operations, where 

(10) N = rlor2 .. rm. 

If rj = sjtj with sj I tj > 1, then sj + tj < rj unless sj = tj= 2, when sj + ty = rj. 
In general, then, using as many factors as possible provides a minimum to (9), but 
factors of 2 can be combined in pairs without loss. If we are able to choose N to be 
highly composite, we may make very real gains. If all rj are equal to r, then, from 
(10) we have 

(11) m=logN 

and the total number of operations is 

(12) T(r) = rNlogrN. 

If N = rmst nt, , then we find that 

T - = M.ar + news + p. t +***, 
(13) N 

log2 N = mlog2 r + n-log2 s + p log2 t + 

so that 

T 
N log2 N 

is a weighted mean of the quantities 

r s t 
log2r log2 S log2 t' 
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whose values run as follows 

r 
r4 log2r 

2 2.00 
3 1.88 
4 2.00 
5 2.15 
6 2.31 
7 2.49 
8 2.67 
9 2.82 

10 3.01. 

The use of r, - 3 is formally most efficient, but the gain is only about 6% over 
the use of 2 or 4, which have other advantages. If necessary, the use of rj up to 10 
con increase the number of computations by no more than 50%. Accordingly, we 
can find "highly composite" values of N within a few percent of any given large 
number. 

Whenever possible, the use of N == rm with r = 2 or 4 offers important advantages 
for computers with binary arithmetic, both in addressing and in multiplication 
economy. 

The algorithm with r 2 is derived by expressing the indices in the form 

(14) j jm-1r2m-1 + + ji 2 + jo 
k- kmI-,2m`l + *** + k .2 + ko, 

where j, and k, are equal to 0 or 1 and are the contents of the respective bit positions 
in the binary representation of j and k. All arrays will now be written as functions 
of the bits of their indices. With this convention (I) is written 

(15) X(jm_1 X***Xjo) =EE***EA(k^m_1 *** ko)- ? 
ko k1 km-1 

where the sums are over k, - 0, 1. Since 

(16) Wikm- 12m-1 = Wjokm 1.2m14 

the innermost sum of (15), over km-,, depends only on jo, km_2, * **, 2ko and can 
be written 

(17) A,(jo, km-2, ... , Iko) = EA(km-, ...X ko) .WJokmJ-I .2m 
km-1 

Proceeding-to the next innermost sum, over km-2, and so on, and using 

(18) W1km l_.2m-1 = W(j -i21-'+.- .+jo)kmmj2m-l 

one obtains successive arrays, 

Aj(jo X * X j- i X Il km-,-) X ... X ko) 

( 19 ) ~~E A l-,(jo, * - si-2 km-, I .. 7 ko ) W(jja- 21 -l+ Ad+o) kmj-l2nM-1 
km-a 

for 1, 2, - m. 
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Writing out the sum this appears as 

A l(jo, .. * *, j1-1 km-l~ X- *...*, ko ) 

(20) Ail-(jo , i,-2, 0, km-,-,) 
, 

ko) 

4+. (-1 )Jl-ijiZ-2Al- (jo , ..., 
)j 2, 1, km-i-i 

, 
* ko) 

W(jj_3.21-3+...+,^o).2m-1) jl-1 = O. 1. 

According to the indexing convention, this is stored in a location whose index is 

(21) io 2rn1 + . + j I, 2m-' + km-_.2 2 + --- + ko. 

It can be seen in (20) that only the two storage locations with indices having 0 and 
1 in the 2" bit position are involved in the computation. Parallel computation is 
permitted since the operation described by (20) can be carried out with all values of 
Jo, ... *, j1-2, and ko X km.. , simultaneously. In some applications* it is con- 
venient to use (20) to express Al in terms of Al,2 giving what is equivalent to an 
algorithm with r = 4. 

The last array calculated gives the desired Fourier sums, 

(22) X(jm1 X, * jo) - Am(joX jm-i) 

in such an order that the index of an X must have its binary bitj put ini reverse 
order to yield its index in the array Am,. 

In some applications, where Fourier sums are to be evaluated twice, the above 
procedure could be programmed so that no bit-inversion is necessary. For example, 
consider the solution of the difference equation, 

(23) aX(j + 1) + bX(j) + cX(j - 1) = F(j). 

The present method could be first applied to calculate the Fourier amplitudes of 
F(j) from the formula 

(24) B(k) - Z F(j)W-6k. 

The Fourier amplitudes of the solution are, then, 

(25) A(k) =ark B(k) 
a~+ b + CW-k 

The B(k) and A (k) arrays are in bit-inverted order, but with an obvious modifi- 
cation of (20), A (k) can be used to yield the solution with correct indexing. 

A computer program for the IBM 7094 has been written which calculates three- 
dimensional Fourier sums by the above method. The computing time taken for com- 
puting three-dimensional 2a X 2" X 2c arrays of data points was as follows: 

* A multiple-processing circuit using this algorithm was designed by R. E. Miller and S. 
Winograd of the IBM Watson Research Center. In this case r = 4 was found to be most practi- 
cal. 
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a b c No. Pts. Time (minutes) 
4 4 3 21 .02 

11 0 0 21 .02 
4 4 4 212 .04 

12 0 0 212 07 
5 4 4 213 .10 
5 5 3 213 .12 

13 0 0 213 .13 
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