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A Search for Projective Planes of a Special Type 
with the Aid of a Digital Computer 

By A. D. Keedwell 

1. Introduction. It is well known that a finite projective plane, in which 
every quadrangle, with two vertices at the coordinatizing points of lx, I has collinear 
diagonal points, has order equal to a power of two and that the additive loop of 
such a plane is necessarily an abelian group. A quadrangle with collinear diagonal 
points is often called the Fano configuration and we shall denote it by F2. The 
author has investigated the consequences of postulating closure of a configuration 
F3 which is a generalization of the Fano configuration and he has shown that, under 
an additional restriction,1 a finite plane in which this configuration is satisfied "local- 
affinely" necessarily has order equal to a power of three (see [3]). However, it appears 
quite possible that the additive loop of such a plane need not be abelian nor even a 
group. The author has constructed a set of permutations of order 27 which is not a 
group and which satisfies a set of conditions which he has shown to be necessary if it 
is to represent the additive loop of a projective plane in which the configuration F3 is 
satisfied local-affinely and which is subjected to the additional restriction referred to 
above (see [3]). However, it is not known whether these conditions are sufficient. 
That is, it is not known whether projective planes having such additive loops 
actually exist. The problem is easily shown to be equivalent to the question whether 
a complete set of mutually orthogonal latin squares exists having a given latin square 
L1 as basis square. 

In the present note, an attempt to construct such a plane by a method involving 
partly a theoretical argument and partly a numerical search using a Ferraiiti 
Mercury digital computer is outlined. 

2, Theoretical Basis of the Investigation. The investigation was confined to 
the case of planes of order 27 for which the additive loop is not a group (this being 
the smallest order for which such a loop can exist as is shown in [3]) and the search 
was confined to the subclass of such planes for which the representational latin 
squares were all isomorphic, as this was the most interesting case geometrically. 

Let I, S I, , ... , Sg4_ be the permutations representing the rows of some 
preassigned latin square L1 as permutations of its first row. From a result due to 
R. C. Bose [1], it can easily be deduced that, in the case when these permutations 
form an abelian group with every element of prime order, a complete set of mutually 
orthogonal latin squares L1i L2 X , Ln,- can be constructed as follows: 

LgoAigSg giMgjSg0 ... * n21MgjSg0 
Li gomgil gi.oMgS . .. . n 1AMI,<Z 
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I The additional restriction is the postulation of the local-affine satisfaction of the con- 

figuration aA (9; 11, 12). 
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for j = 1, 2, ... , n - 1. Here, gMgj = g9 *g,, where (*) denotes multiplication, in 
the field GF[n] which has the given group as additive group; grSg, = 9r + gk, where 
( + ) denotes addition in the field; and go , gi are, respectively, identity elements for 
addition and multiplication, so that Mg, = I = SAo . Thus, the Mg, form a cyclic 
group of order n - 1 and each leaves the element go fixed. If g9 denotes the element 
-1 of the field GF[n], then the permutation Man may be expressed in the form 

AIzs = (go) (goSg1 goSf')(qoSi2 g OS7') (9oS0(n -l)12 9US0(n1)/2)a 

According to H. B. Mann [5], if Pi, P2, * , Pn-i and Q,, Q2, ... , Qn -i are, 
respectively, the permutations representing the rows of two latin squares Lj, Lk , a 
necessary and sufficient condition that these squares be orthogonal is that the 
permutations PV'lQ1,X P2'1Q2 X , P AQA-1 form a latin square, i.e., that they be 
an exactly simply transitive set of permutations. Moreover, the squares whose rows 
are the permutations PMj , P2Mj , * * * X PnilMgj and QiMgk, Q2Mk, X** 

QnlMgk will then be orthogonal for any choice of the permutations M0j, Mgk. 
It follows that, given an arbitrary preassigned latin square LI, such as that ob- 

tained by the author (of order 27 and corresponding to a plane of the type described 
in the introduction), it is always possible to obtain a complete set of mutually 
orthogonal latin squares L1', L2', * * , Ln-i having L1 as basis square, where 

.o~1O M M.1 ... goMgjSgoM~",,- glMgjSg gaj *i gn-lMgjSgoM~_, 
Li' goMgiSgiM2 g91Mg;Sg1MJ1 ... gn1MgjS01M`j 

provided a group of permutations Mg , I , * *, Mgn-1 can be found such that, 
for every Mj , the set of permutations 

gao gisgo X glj gja, 91 * Aid PgnlMgjSgn-I 

is an exactly simply transitive set. The squares will then be in standardized form 
(see [2]) and all isomorphic. 

If, with respect to his square L1 of order 27, in which the Sgr are all permutations 
consisting entirely of cycles of length three but do not form a group, a square L2 is 
obtained by means of the permutation MgI., (defined in terms of the Sgr as above), 
the author has shown that, for a certain choice of go, the squares L1, L2 are or- 
thogonal. The question was then whether a group of permutations, of order 26 and 
to include the permutations Mg, I and Mg., could be constructed which would 
have the properties required above. The question was of interest from another point 
of view in that no complete set of mutually orthogonal latin squares based on a 
square whose additive loop is other than an abelian group has yet been constructed. 

The assumption was made that the group would be cyclic and a numerical search 
was made to find one permutation of the group other than Mg . Such an element 
would necessarily be of order 13 or 26. 

In the following argument outlining the design of the search programme, ex- 
tensive use is made of the fact that, if P and Q are any two permutations on n letters, 
then P-'QP is obtained from Q by applying the permutation P to each of the letters 
in the brackets representing the cycles of Q. For example, if 

Q - ( )( )(qlq2q3)( ) 
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and 

(ql q2 q3 . . . 

P =1 

rl r2 r3 *./ 

then 

P-'QP_ ( ) )rl 72r3)( 

or, as we shall often write, 

P'QP= ( )( )(qP q2*P q3.P)( ) 

For a proof of this result see, for example, p. 71 of [4]. 

3. Outline of Method Employed for the Numerical Search. The author's latin 
square L1 is as follows: 

1 2 3 4 5 6 7 8 9 1' 2' 3' 4' 5' 6' 7'8'9' 1"2"3" 4"5"6" 7"8"9" 
2 3 1 5 6 4 8 9 7 2' 3' 1' 5' 6' 4' 8'9'7' 2"3"1" 5"6"4" 8"9"7" 
3 1 2 6 4 5 9 7 8 3'1'2' 6' 4'5' 9'7'8' 3"1"2" 6"4"5" 9"7"8" 

4 5' 6" 7 8' 9" 1 2' 3" 4' 5"6 7' 8"9 1'2"3 4"5 6' 7"8 9' 1"2 3' 
5 6' 4" 9 7' 8" 1"2 3' 5' 6"4 9' 7"8 1 2'3" 5"6 4' 9"7 8' 1'2"3 
6 4' 5" 8 9' 7" 1' 2"3 6' 4"5 8' 9"7 1"2 3' 6"4 5' 8"9 7' 1 2'3" 

7 8"9' 1 2"3' 4 5"6' 7' 8 9" 1' 2 3" 4'5 6" 7"8'9 1"2'3 4"5'6 
8 9"7' 3 1"2' 4"5' 6 8' 9 7" 3' 1 2" 4 5"6' 8"9'7 3"1'2 4'5 6" 
9 7" 8' 2 3" 1' 4' 5 6" 9' 7 8" 2' 3 1" 4"5' 6 9"7' 8 2"3' 1 4 5"6' 

1' 2 3' 6' 4' 5' 8"9"7" 1"2"3" 6"4"5" 8 9 7 1 2 3 6 4 5 8'9'7' 
2' 3' 1' 4' 5' 6' 9"7"8" 2"3"1" 4"5"6" 9 7 8 2 3 1 4 5 6 9'7'8' 
3' 1' 2' 5' 6' 4' 7"8"9" 3"1"2" 5"6"4" 7 8 9 3 1 2 5 6 4 7'8'9' 

4'5"6 8' 9"7 3 1' 2" 4"5 6' 8"9 7' 3' 1"2 4 5'6" 8 9'7" 3"1 2' 
5' 6"4 7' 8"9 3"1 2' 5"6 4' 7"8 9' 3 1'2" 5 6'4" 7 8'9" 3'1"2 
6' 4"5 9' 7"8 3' 1"2 6"4 5' 9"7 8' 3"1 2' 6 4'5" 9 7'8" 3 1'2" 

7' 8 9" 3' 1 2" 5" 6' 4 7" 8' 9 3" 1' 2 5 6"4' 7 8"9' 3 1"2' 5'6 4" 
8' 9 7" 2' 3 1" 5' 6 4" 8"9' 7 2"3' 1 5"6'4 8 9"7' 2 3"1' 5 6"4' 
9' 7 8" 1' 2 3" 5 6"4' 9"7' 8 1"2' 3 5'6 4" 9 7"8' 1 2"3' 5"6'4 

1" 2" 3" 5" 6" 4" 9' 7' 8' 1 2 3 5 6 4 9"7"8" 1' 2' 3' 5' 6' 4' 9 7 8 
2"3" 1" 6"4"5" 7' 8' 9' 2 3 1 6 4 5 7"8"9" 2'3' 1' 6'4'5' 7 8 9 
3"1"2" 4"5"6" 8'9'7' 3 1 2 4 5 6 8"9"7" 3'1'2' 4'5'6'18 9 7 

4"5 6' 9"7 8' 2 3' 1" 4 5' 6" 9 7' 8" 2'3"1 4'5"6 9'7"8 2"3 1' 
5" 6 4' 8" 9 7' 2" 3 1' 5 6' 4" 8 9' 7" 2 3' 1" 5' 6"4 8' 9"7 2' 3" 1 
6"4 5' 7"8 9' 2' 3"1 6 4'5" 7 8'9" 2" 3 1' 6'4"5 7'8"9 2 3'1" 

7"8'9 2"3' 1 6'4 5" 7 8"9' 2 3"1' 6"4'5 7'8 9" 2'3 1" 6 4"5' 
8" 9' 7 1" 2' 3 6 4" 5' 8 9" 7' 1 2" 3' 6' 4 5" 8' 9 7" 1' 2 3" 6"4' 5 
9"7'8 3"1'2 6"4'5 9 7"8' 3 1"2' 6 4"5' 9'7 8" 3'1 2" 6'4 5" 

When we take go = 1, the corresponding permutation Mg, is 

(1)(2 3)(1' 1")(2' 3")(2" 3')(4 7)(5 7')(6 7")(4' 8") 

(5' 8) (6' 8') (4" 9') (5" 9" ) (6" 9), 

and the latin squares L1 , L2 are then found to be orthogonal. 
A cyclic group of order 26 contains one permutation of order two, twelve permnu- 

tations of order 13, and twelve permutations of order 26. Since, in the present case, 
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the order of the group is to be equal to its degree, it will be simply transitive. The 
permutation Mg. of order two is already known and, since (2")M0s - 2, there must 
exist a permutation of order 13 or 26 such that 2" -+2. Moreover, Mr'MTM,. = Mg, 
for each r 9 2, since a cyclic group is abelian. Therefore, if M07 is of order 26, Mg0, 
maps the single cycle of Mar into itself. If M0, is of order 13, M,0r necessarily maps 
each cycle into the other. For, if not, we should have 

(biMg.z b2,Mg, * b13M.)_ (bi b2 i. b13) 

This implies brig. = br+k , k < 13, for each r (mod 13). Then, brM2 = br+2k . That 
is, br = br+2c . Therefore 2k 0 (mod 13), which is impossible. 

Thus, if a cyclic group exists, we are sure of the existence of a permutation of one 
of the types 

(I) (2" 2 b3 b4 . . b13 3' 3 b3Ma7 b4Mgz .. bl3Mg,) 

or 

(II) (2" 2 b3 b4 ... b13)(3' 3 b3Mg;, b4MAI* ... bl3Mg,0). 

Our main programme was designed to obtain all permutations of the form 

Mg, -7 (2" 2 b3 b4 . bi3 p 3' 3 b3Mg, b4MA,, ... b13Mgx q), 

with p, q unassigned, such that each of the permutations S-MgrSgk, k 0, 1, 
* , 26, transformed the symbol 1 into 4 different symbol.2 If possible, the symbol 
b13 was then to be found such that a permutation Qf type I or II having the same 
property was constructed. (In the machine, p was set equal to 3' or 2" and q equal 
to 2" or 3' for this purpose.) The number of permutations to be tested was very 
large, and, in fact, it turned out to be more economic in machine time to obtain 
firstly all permutations of the form 

Mgt - (2" 2 b3 b4 ... 3' 3 b3Mgz 04Mg, . .) 

such that the set of permutations SMAgaSSg , k 0, 1, , 26 was, at most, simply 
transitive. 

For the main programme, the symbolism in the machine was chosen so that the 
yth column of the latin square L1 was that in which the symbol 1 appeared in the yth 
row, and the symbol of the xth row and yth column was then stored in register 
address (k + x + 27y). Here k was a fixed integer introduced for conven- 
ience of programming. With this choice of notation, it followed that, if 
Mgr = * ... b,_l b * ... ) and if yt-i and yt represented, in machine symbolism, the 
columns of L1 which contained the entries bt-i and bt in the first row, then exactly 
one of the set of permutations Sgkl~'ArSgka k =- 0, 1, * , 26, would transform the 
symbol 1 into the symbol held in register address (k + yt-i + 27yt). For the permu- 
tation Sg. represented by the yti-th row of L1 was that which carried the symbol b,_1 
into the symbol 1 (in virtue of our choice of notation) and which carried the symbol 
bt into the symbol held in register address (k + yt-_ + 27yt). Thus, if the latter 
symbol were denoted by d, we had S 9AolrSrm (... bt1S0 btSgm .) 

- ( d ).. 

2 This is a first necessary condition for the set of permutations So -MrS1k, k 0, 1, *, 2 
to be exactly simply transitive. 
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As an example, since Mar (2" 2 *.. ) and since the entry 1 occurs in the twelfth 
row of the column of the latin square which has 2" as its first row entry, while the 
entry 1' occurs in the twelfth row of the column which has 2 as its first row entry, 
we have 

Sell, Mersell = ( 2" ) ( ~~2 
.. .. 2 .. 

S9 ~ /1 * m, gII 
2.. ... .. 2 .. .. 1 . 

In this example, b1 = 2, yt-i 12, bt 2, yt 3, so that the column whose first 
row entry is 2 was the third one stored in the machine, and the column whose first 
row entry is 2" was the twelfth one stored, storage of the entire latin square being in 
consecutive registers, column by column. 

Similar notation was used for the subsidiary programmes and obviated the 
necessity to scan the columns of L1 in order to find the position of the symbol re- 
quired. 

4. Results. Thirty-six "successful" permutations were obtained from the 
main programmes, these being eighteen cyclic permutations of order 26 and eighteen 
permutations of order 13. Here, "successful," when referred to a cyclic permutation 
mgl , for example, means that each of the permutations S;MgrSAk, k =0 
1, ... , 26, transforms the symbol 1 into a different symbol, and that the partially 
defined permutation (2" 2 b3 b4 ... 3' 3 b3Mg. b41JM* .* *) from which Mg, was con- 
structed does not violate any of the subset of the necessary conditions that the set 
S'MgrSgk be an exactly simply transitive set of permutations which are determi- 
nable from the partial permutation. However, on testing these thirty-six permu- 
tations individually, it was found that none fulfills all the conditions for the set of 
permutations S~'kM gSgk k 0 ,) 1, ... , 26, to be an exactly transitive set of per- 
nutations. 

Since our search was exhaustive for the case of permutations Mgr which belong 
to a cyclic group keeping the symbol 1 fixed, we may deduce that no projectile plane 
of order 27 exists which has, at one and the same time, an additive loop of the type 
represented by the latin square in paragraph 3 and a structure which permits the 
remaining latin squares to be generated with the aid of a cyclic group of the kind 
which we have described. The general question posed in paragraph 1 of this paper 
unfortunately remains an open one. 

For the interest of the reader, we append a typical six of each type of permuta- 
tion M,, obtained from the main programmes. 

(2 2 7 9" 5 4" 7" 1' 2' 6 8" 6" 7 3 3 4 5" 8 9 6 1" 3" 8 4 9 5) 
(2" 2 8 7" 6" 5 8" 1' 2 4" 9" 4 8 3 3 5' 6 9 7 4 1" 3" 9' 5" 7 6') 
(2 2 9 8 4 6 9" 1 2 7" 5 9 3 3 6" 4 7 8' 5" 1" 3" 7 6 8 4") 
(2" 24' 6 7" 9' 5 1' 2 7 4 9" 6 3 3 8" 9 64" 8 1" 3" 5 7 5" 8') 
(2" 2 5' 4 7 9" 6' 1 2' 7" 5 9 4' 3 3 8 9' 4 5" 8' 1" 3" 6 7' 6" 8") 
(2- 2 6' 5" 7 9 4' 1' 2 7 6 9' 5 33 8' 9" 5 6" 8" 1" 3" 4 7" 4" 8) 

(2" 2 7 9" 5' 9' 6 3" 8" 6" 5 81 1") (3' 3 4 5" 8 4" 7" 2' 4 9 7' 6 1') 
(2" 28 7" 6" 7' 4' 3" 9" 4 6' 9'1") (3' 35' 6 95 8" 2' 5" 7 8' 4" 1') 
(2" 29 8"4 8' 5"3" 7"5' 4"7'1") (3'36"4' 76' 9"2'6 8 9'5 1') 
(2"24'6" 7" 4"8 3" 4 9"8' 5 I") (3'38"9 69' 5' 2'7 5"6'7' 1') 
(2" 2 5' 4" 7 5" 8 3" 5 9 8" 6 1") (3' 3 8 9' 4 9" 6 2 7 6" 4' 7" 1') 
(2" 26' 5" 7' 6" 8" 3" 6 9' 8 4 1") (3' 38' 9" 59 4' 2' 7" 4" 5'7 1') 
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Approximate Integration Formulas for Ellipses 

By Nincy Lee and A. H. Stroud 

1. Introduction. Here we give some approximate integration formulas of the 
form 

(1) 1(f) IIB-(x ) fx )dxdy ct Ai Af(xi yi), ), +X Y \/(( _ c)(x + c)2 + y2) d -) 
~oo oo0 N 

(2) J(f) j w(x, y)f(x, y) dxdy 2 I Aif(xi yi), 

W (X, Y) D(x, y) exp [-aD2(x, y)] 
.I((X - C)2 + y2) \/((X + C)2 + y2) 

D(x, y)-=c/(( _C)2 + y2) + \V((X + C)2 + y2). 

Here EB is the interior of the ellipse with foci at (:Ic, 0), semiminor axis B, and 
semimajor axis V/(c2 + B2). In w(x, y), a is a positive constant. For both of these 
integrals we give integration formulas exact for all polynomials of degree _ ck, 
k = 3, 5, 7. These formulas are somewhat similar to formulas given by Hanmmer and 
Stroud [11 for a circle and square and were found by similar methods. 
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