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Approximate Integration Formulas for Ellipses 

By Nincy Lee and A. H. Stroud 

1. Introduction. Here we give some approximate integration formulas of the 
form 

(1) 1(f) IIB-(x ) fx )dxdy ct Ai Af(xi yi), ), +X Y \/(( _ c)(x + c)2 + y2) d -) 
~oo oo0 N 

(2) J(f) j w(x, y)f(x, y) dxdy 2 I Aif(xi yi), 

W (X, Y) D(x, y) exp [-aD2(x, y)] 
.I((X - C)2 + y2) \/((X + C)2 + y2) 

D(x, y)-=c/(( _C)2 + y2) + \V((X + C)2 + y2). 

Here EB is the interior of the ellipse with foci at (:Ic, 0), semiminor axis B, and 
semimajor axis V/(c2 + B2). In w(x, y), a is a positive constant. For both of these 
integrals we give integration formulas exact for all polynomials of degree _ ck, 
k = 3, 5, 7. These formulas are somewhat similar to formulas given by Hanmmer and 
Stroud [11 for a circle and square and were found by similar methods. 
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We have not encountered integrals of the form I(f) and J(f) in any practical 
problem but we believe that approximate integration formulas for these integrals 
will be useful since the weight functions in them become infinite at the points 
(?+c, 0). As a hypothetical example, the formulas we give here might be useful in 
problems in chemistry or physics which involve integrals of the form 

JL G(x, y) dxdy, 

where G(x, y) is related to the repulsive force on a free particle p due to two fixed 
particles located at (IJc, 0) under the assumption that the repulsive force on p 
becomes infinite as p approaches one of the fixed particles. 

By transforming from rectangular to confocal elliptical coordinates, formulas for 
the integrals I(f) and J(f) can also be constructed by combinations of one-dimen- 
sional formulas. In this way one can obtain formulas of degree 2h - 1 using h2 
points for h 1, 2, 3, * . Formulas of this type for 1(f) have been discussed by 
Page [2] and will not be described here. 

2. Description of the Formulas. We give two formulas for each of the degrees 
3, 5, 7 for each of the integrals I(f) and J(f). The formulas are given in terms of the 
monomial integrals Ij,k. Here Ijk denotes either I(xjyk) or J(xjyk), j, k 
0,12, 1 2 . 

If at least one of the integers j or k is odd, then 

I(x yk) = J(xjyk) = 0. 

The values of I(Xjyk), j and k both even, are given by 

I(x2ny2m) _ B(2n + 12m ) E () C2n2 gm+k 

where 

n-(-1 )2kC2kB2n-2k-i (-1 Pn )nC2n Pn L 
anAk=O n(n -l) (n -k) +n! 

A C2 2 1) Ak2!Bn~ ~l (- 1) 2nc-2 Pn ,n k+L 

A - /(C2 + B2), L = 2 loge (A + B) pnk = (2n-1) (2n-2k?1) 

Here B(r, s) is the beta function r(r)r(s)/P(r + s). 
Thus I(1) = 7rL. 
The values of J(xVjk) for j and k both even are 

J(X2ny2m 

= e4acB(2 + 1 2m + 1) (n) c2n2k (4a)m-k(m + 2k + 1) 

In Table 1 we give numerical values of the constants in the formulas for I(f) 
for B = 1, c = 1, and in Table 2 numerical values for J(f) for c = 1, a = 1/4. 
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TABLE 1 

Formulas for I (f), B = 1, c = 1 

Formula 3a 

u = 1.141174027799650 v = 0.549798291853001 
A1= 1.384458393024340 

Formula 3b 
u = 0.806931893571098 v = 0.388766100454037 

A, = 1.384458393024340 

Formula 5a 
u = 1.092499536304484 A1 = 1.191157269603166 
X = 0.627903814268268 7q = 0.657867463793369 

Ao= 1.221592995357823 A2 = 0.483481509383302 

Formula 5b 
v = 0.803909065610874 A1 = 0.398360298916025 
X= 1.012197157907448 7= 0.302513408229517 

Ao 1.221592995357823 A2 = 0.879879994726872 

Formula 7a 
u, = 1.246009745849288 A1 = 0.438093548819901 
U2 = 0.780689798095836 A2 = 0.971706127419465 
vi = 0.895112350759653 A3 = 0.163122086390356 
V2 = 0.394559771541860 A4 = 0.541777751729327 
X = 0.900546669274181 = 0.557659666410276 

A5 = 0.327108635844816 

Formula 7b 
Uj = 1.271634501705140 A1 = 0.366749953216258 
u2 = 0.821020360201681 A2 = 1.007804731117124 
vi = 0.910429182160393 A3 = 0.144612593026746 
V2 = 0.440808525551630 A4 = 0.489797261280969 
X = 0.900546669274181 = = 0.557659666410276 

A0 = 0.211469951435905 A5 = 0.327108635844816 

The formulas are: 

Formula 3a, 4 points, degree 3: 

Point Coefficient 

( Iu, 0) Al 

(0, ?Ev) A1 

2 2I20 2 2Io2 Ioo 
U V-1= - A, 

100 04 

Formula 3b, 4 points, degree 3: 

(?u, ?v) A1 

2 I20 2 I02 Io0 
u =-, v = , Al =4 I00 I00 4 
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TABLE 2 
Formulas for J(f), c = 1, a = 0.25 

Formula 3a 
u = 1.224744871391589 V - 0.707106781186548 

A1 1.024236695866873 
Formula 3b 

u = 0.866025403784439 v = 0.500000000000000 
A1 = 1.024236695866873 

Formula 5a 
U = 1.243163121016122 A1 = 0.810017256208442 
X = 0.790569415042095 = 1.060660171779821 

A0 = 1.566479652502276 A2 = 0.227608154637083 
Formula 5b 

v = 1.374368541872554 A1 = 0.147884442718746 
X = 1.172603939955857 -q = 0.456435464587638 

Ao = 1.566479652502276 A2 = 0.558674561381931 
Formula 7a 

u, = 1.917739116886260 A1 = 0.054743310430066 
U2 0.934449448785687 A2 = 1.179794929237429 

- = 1.854770545973768 A3 = 0.023083772103826 
V2 = 0.617009547822385 A4 = 0.594185347729922 
X = 1.244989959798873 v = 1.024695076595960 

A= 0.098333016116251 
Formula 7b 

Ul= 1.975911856128909 A, = 0.044100110335543 
U2 = 0.955805485502959 A2 = 1.159574673340265 
v= 1.901481972888572 A3 = 0.019625337242702 
V2 0.661716141789722 A4 = 0.535916870607671 
X 1.244989959798873 n 1.024695076595960 

Ao 0.185180735950124 A5 = 0.098333016116251 

Formula 5a, 7 points, degree 5: 

(0, 0) Ao 
(?u, 0) A1 

(?4-XI 4? 77) A2 
2 I40Io4 -122 2 I22 2 I04 

I20104 - 
102122 102 102 

)2 i2 
(20I04 -I02I22) 102 

A1 = 2- 122 A24- A o = Ioo-2A1 4A2; 
2Io4(I40Io4-I22 J 4IO4 

Formula 5b, 7 points, degree 5: 

(0, 0) Ao 
(0, ?v) Al 

(?X, ?74) A2 

2 I40IO4 -22 2 I40 2 I22 

I40Io2 - I2OI22 120' 120 

(I40Io2 I2OI22 ) 20 
A1 = (1401 2 102 A2 = 4T Ao = 1o0-2A1 -4A2; 

2I40(I40104- 22) 40 
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Formula 7a, 12 points, degree 7: 

(ui0 ' ?) A1 

(-4U2, 0) A2 

(0, iVl) A3 

(0, 4V2) A4 

(?X, i) A6 

2 142 2 I24 _ _22 
) = rl=?I, A5- 12 

122 I22 4I42I24 

Ul, U22 are roots of u4 + C1u2 + co = 0, where 

co = [[I20 - 4A5X2][Io - 4A5X6]- [140 - 4A5X4]2]/D1, 

Ci [[120 - 4A6X2][140 - 4A5X4] - k[Io - 4A5X6]]/D1, 

DI = k[I4 - 4A5X4] - [20 - 4A5X2, 

A1 = [120 - 4A6X - k1u22]/[2(ul2-U22 

A2 = [I2o - 4AX2 - k1ul2]/[2(u22 -U2)] 

k1 = (2/3)[Ioo - 4A5]. 

v2, v2 are roots of v4 + dJv2 + do = 0, where 

di = [[Io2 - 4A5172][Io6 -4As76] - [IO4- 4A5X4]2]/D2, 

do = [[Io2 - 4A5l2][I - 4A4]-k2[Io - 4A6t6]]/D2, 

A= k2[I0 - 4ASr4] - [102 -4A 

A3 = [102 - 4A6X2 - k2v22]/[2(v12 -V22)] 

A4 = [102 - 4At2 - k2vl2]/[2(v22 -V12) 

k2 = (1/3)[Ioo - 4A5]. 

Formula 7b, 13 points, degree 7: 

(00 O) Ao 

(i ul O) Al 

(?U2 I ?) A2 

(0, ?V1) A3 

(0, ?V2) A4 

(XI, 4n) A5 

The parameters in this formula are determined by the same equations as the 
parameters in Formula 7a except we use 

ki = 0.65[Ioo - 4A5], k2 = 0.30[Ioo -4A5, 

Ao = I00 - 2(A1 + A2 + A3 + A4) - 4A5. 
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3. Concluding Remarks. We can obtain formulas similar to those given here 
for any region (and weight function) which has the same symmetries as the ellipse. 
We need only substitute the appropriate monomial integrals I2n ,2m in the expressions 
given. 

It should also be noted that the formulas of degree 7 are not unique. Similar 
formulas can be obtained by choosing different values for the quantities ki and 12. 

Various 12-point formulas are obtained by choosing ki and k2 to satisfy 

ki + k2 =Ioo - 4A6. 

Although there is this free parameter in the 12-point formulas we believe it is not 
possible to obtain a formula of degree 7 using fewer points. 
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Improved Asymptotic Expansion for the 
Exponential Integral with Positive Argument 

By Donald van Zelm Wadsworth 

The usual asymptotic approximation to the exponential integral can be markedly 
improved, for the case with positive real argument, by adding a simple correction 
term as shown below. Similar results for the error function with imaginary argument 
(essentially the same as Dawson's function) are given in [1].* 

By definition, the exponential integral with positive real argument is 

Ei(x) =-J Fe- dt = -A le-' dt - i7r. 

The line integral along the real axis from -x to oc is a Cauchy principal value since 
there is a pole at the origin. The path of integration L goes from -x to 0o, passing 
above the origin. Repeated partial integration of the infinite integral yields Ei (x) 
En(x) + en(x), where 

n-1 

En(x) = x-lexE m!x-m 
0 

is the asymptotic approximation for the interval (n- 2) _ x < (n + 1), and 

en(x) = -_(-)nn! It t--1e- t - iir 

Received November 2, 1964. 
* The correction term derived in [1] could also be obtained, in a less direct fashion, from 

the Chebyshev polynomial expansions for Dawson's function given in [2]. 


