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Deferment of Computation in the Method of 
Least Squares 

By Irving H. Siegel 

This note calls attention to a variant formulation of the least-squares adjust- 
ment procedure [1] that should prove increasingly attractive as electronic data- 
processing equipment becomes ever more widely available. It indicates that the 
statistician need not concern himself with the two rituals featured in traditional 
textbook presentations-namely, the construction and solution of the conventional 
"normal equations." By simply arranging the original data (together with l's and 
O's) in a particular pattern and without engaging in any arithmetic operations, he 
(or an aide) may instantly form the essential matric system to be solved. This 
system contains no processed elements-no sums or products-yet is algedracalliy 
equivalent to the usual normal equations. Thus, model design, data compilation, 
and explicit statement of the simultaneous equations to be solved are entiiely 
divorcible, in linear regression analysis, from computation, which may be deferred 
and delegated to specialists as a unified task. 

To illustrate the variant approach, we consider the classical linear regression 
problem in which n observed values of only one variate are deemed subject to 
(random) error. This linear model has the matrix form 

(1) Y=Xb+e, 

where Y is the (n X 1) vector of observations subject to error, X is the ginen 
(n X k) matrix of explanatory coefficients (n > k), b is the (k X 1) vector of 
parameters to be estimated, and e is the (n X 1) vector of residuals with zero ex, 
pectation. (One of the columns of the X matrix consists entirely of l's when a con- 
stant intercept is included in the model design.) 

When the n observations are unweighted, the least-squares principle requires 
minimization of the scalar sum of n squared residuals, S = e'e = (Y - Xb)'. 
(Y Xb). The accent here denotes transposition. Minimizing this expression with 
respect to b, we obtain the adjustment condition 

(2a) X'e = 0 

which is more often written in the form of a composite matrix normal equation, 

(2b) X'Xb -X XY. 

It is a significant fact that (1) and (2a), which state the initial observation 
equations and the additional least-squares constraints, may be incorporated at once 
into a supermatrix system corresponding to (2b) but containing no processed 
elements. Thus, literally, all of the arithmetic operations associated with regression 
analysis may be shifted to the programmer and to other computer-associated person- 
nel for execution in the manner they deem best. Specifically, (1) and (2a) may be 
combined to form the basic matrix equation 

(I X] [:1 = W 
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Here, I is the (n X n) identity submatrix that premultiplies the (n X 1) error sub- 
vector, e, upon expansion. All the other "packing" included in (3) consists of zero 
elements. The system does not need to be solved for e (except, perhaps, as a check). 
Other compatible arrangements of the submatrices and subvectors are feasible with- 
out any change in the results. 

The deferment of computation is achieved, of course, at the expense of compact- 
ness. The leftmost matrix of (3) is square, symmetric, and nonsingular, like the 
corresponding matrix for conventional normal equations, and its determinant also 
has the same numerical value as the conventional least-squares determinant (i.e., 
X'X, the product taken along the secondary diagonal with sign ignored). It is of 
greater dimensionality, however, incorporating explicit information for the coeffi- 
cients of two sets of unknown elements-errors in addition to parameters. Since 
the coefficients assigned to the errors in (3) by the least-squares principle (X') are 
given immediately by the transposition of the submatrix associated with the original 
observations (X), no new data are required for completion of the array of un- 
processed elements. 

When the n observations represented by (1) are unequally weighted, the least- 
squares criterion requires minimization of Sw = e'We = (Y - Xb)'W( Y -Xb). 
Accordingly, for the adjustment condition we obtain 

(4a) X'We = 0 

or, if we prefer, the matrix version of the conventional weighted normal equations: 

(4b) X'WXb = X'WY. 

Equations (1) and (4a) may easily be incorporated into a supermatrix system 
that is equivalent to (4b). If all preliminary processing of the data is to be avoided, 
however, it is necessary first to expand (4a) into two equations. Accordingly, the 
resulting supermatrix system without processed elements has three tiers: 

(5) I W 0 e = 

LX' 0 0_J b, _0 _ 

Here, W is the diagonal (n X n) submatrix of given weights, and X refers to n 
dummy variables (resembling Lagrange multipliers) that do not need to be deter- 
mined explicitly. 

The leftmost term of (5) has a simple memorizable structure. It is triangular with 
respect to its submatrices and is symmetric with reference to its principal diagonal. 
Its determinant has the numerical value of the product along the secondary di- 
agonal, i.e., X'WX. The same product occurs in (4b) and is also the value of the 
determinant of the smaller square matrix with processed elements that is typically 
derived for the weighted regression case. 

In the concentrated computation phase, inversion of the turgid squares matrices 
in (3) and (5) may be tackled directly. Despite their size, they need not tax modern 
computing equipment; and certain features, such as symmetry, may contribute to 
efficient handling. At worst, the work may be programmed to entail the construc- 
tion and solution of conventional normal equations. In any case, it is clear that all 
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the arithmetic processing involved in a large least-squares problem is assignable to 
specialists in one package. 
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