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48[L].-A. H. HEATLEY, Tables of the Confluent Hypergeometric Function and the 
Toronto Function, University of Waterloo, Waterloo, Ontario, Canada, October 
1964, one typewritten sheet and four computer sheets deposited in UMT File. 

In these tables the functions e-KXI'(a,,y, x) and T(m, n, r) are tabulated to 9S 
in floating-point form, based upon calculations performed to at least 12S on an 
IBM 1620 system [1]. 

For the confluent hypergeometric function, the ranges of parameters are: 

a = ( y e- 2(2)3; a = 9(1)3, y = 3; a = 5(y)2 e = 2. 
The values of x are such that x'12 = 0(0.2)4, 5; except that when a = 1, e 2 

2( 2 )3, we find x12 = 0(0.1)3. 
For the Toronto function, the corresponding ranges are: 

m- -2 (2) n = -2(2)2, r = 0(0.2)4(1)6, 10, 25, 50; and 
m = 1, n = -2(4)2, r = 0(0.1)3. 

J. W. W. 
1. Math. Comp., v. 18, 1964, pp. 687-688, MTE 361. 

49[L].-J. R. JOHNSTON, Tables of Values and Zeros of the Confluent Hypergeometric 
Function, Report. 31901, Aircraft Division, Douglas Aircraft Company, Inc., 
Long Beach, Calif., August 1964, 4 pp., 28 cm. 

This report briefly describes the computational procedure followed in evaluating 
the confluent hypergeometric function 1F(A, B, X) and its zeros by a FORTRAN IV 
program prepared for use on an IBM 7094 system. 

Computation of the function and its zeros was carried to 7D precision for 
A = -5(0.25) - 0.25, B - 0.25(0.25)4, X = 0.05, 0.1(0.1)1(0.2)10(0.5)20, 
and for A = -20(0.5)1, B = 2, X = 0.05, 0.1(0.1)1(0.2)20(0.5)50. These in- 
ternally computed values for each of these two ranges were rounded to 4S and 
written as separate files on a special output tape, of which a copy can be obtained 
upon request from the Technical Library, Aircraft Division, Dept. C-250, Douglas 
Aircraft Company, Inc. 

No printed output is available except for an abbreviated table of zeros to 4S 
that appears on the last page of this report. The range represented therein is A = 
-20(1) - 1, B = 2, and, with a few exceptions corresponding to A = -4(1) - 1, 
the first five positive zeros are tabulated. 

For a list of related tables the reader is referred to the publication of Slater [1]. 

J. W. W. 
1. L. J. SLATER, Confluent Hypergeometric Functions, Cambridge Univ. Press, New York, 

1960. [See Math. Comp., v. 15, 1961, pp. 98-99, RMT 22.] 

50[LJ.-Siu-KAY LUKE & STANLEY WEISSMAN, Bessel Functions of Imaginary Order 
and Imaginary Argument, University of Maryland, Institute for Molecular 
Physics, Report DA-ARO(D)-31-124-G466 No. 1, 1964, College Park, Md. 

This report gives a rather extensive tabulation of 

1 Iq(V) - 
Iaiq(V) v-= Gq (v) =Kiq (v)= 7e 2 sinh q~r 
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where I,(z) and K,(z) are the modified Bessel functions of the first and second 
kinds, respectively. The range on q and x varies. For example, q = 0.2(0.2)10, 
x = 1.0(0.01)2.22; q = 0.4(0.2)10, x = 2.23(0.01)2.29; q = 1.2(0.2)10, x _ 2.30 
(0.01)2.39; q = 1.6(0.2)10, x = 2.40(0.01)2.49. Roughly speaking, we have data 
for q = 0.2(0.2)50, where the tables were "cut at an x value for each set of q's 
where the oscillating amplitude appears to be a constant. " When x > in q, the tables 
were "cut at its first zero after it passed the turning point." The entries were found 
by numerical integration of the differential equation. The authors expect the data to 
be good to at least 5S for q < 40 and to 4S for higher q. The only other tables of 
this kind known to us are by S. P. Morgan. [See M1TAC v. 3, 1948-1949, pp. 105- 
107, RMIT 504.] There is some overlap. 

Y. L. L, 

51 [L].-M. M. STUCKEY & L. L. LAYTON, Numnerical Determination of Spheroidal 
Wave Function Eigenvalues and Expansion Coefficients, AML Report 164, David 
Taylor Model Basin, Washington, D. C., 1964, 186 pp., 26 cm. 

Spheroidal wave functions result when the scalar Helmholtz equation is sepa- 
rated in spheroidal coordinates, either probate or oblate. The angular prolate spher- 
oidal wave functions, for example, satisfy a differential equation of the form 

d 2_ _ _ 22 

dz Z )dz + mn - CZ 
_ Z2 u = 0. 

The solutions of this equation are much more complicated than either Bessel 
or Legendre functions, in which, in fact, series solutions of the spheroidal functions 
are most often expanded. The complexity arises from the fact that the spheroidal 
differential equation has an irregular singular point at co and two regular ones at 
z = t1, in contrast to the three regular ones of the Legendre equation and to the 
one regular and one irregular singularity of the Bessel equation. 

The construction of tables of spheroidal wave functions involves the calculation 
of the eigenvalues Xman of the differential equation, that is, those values of X for 
which there are solutions that are finite at z = - 1, and the calculation of the 
coefficients in expansions in terms of either Legendre or spherical Bessel functions. 
In the past, such calculations have been, for the most part, sporadic and in many 
cases not very accurate. 

The tables of the spheroidal eigenvalues and expansion coefficients in this report 
from the David Taylor Model Basin are the most complete that have been made 
available so far. Values of Xmf are given to 1iS, in floating-point form, for m1 = 

0(1)9, n = m(l)m + 9, for c = 0.2.5(0.25)10(1)20. Values of the expansion coeffi- 
cients dr" are givenfor c = 0.25(0.25)10, m = 0 and 1,n = m(1)10, r 1(2) 9 
for n - m odd, and r = 0(2)28 for n - m even. 

CARSON FLAMME4 
Stanford Research Institute 
Menlo Park, California 

52[L, M].-ANDREW YOUNG & ALAN KIRK, Bessel Functions. Part IV, Kelvin 
Functions, Royal Society Mathematical Tables, Volume 10, Cambridge Uni- 
versity Press, New York, 1964, xxiii + 97 pp., 27 cm. Price $1 1.50. 


