
Numerical Technique for Solution and Error 
Estimate for the Initial Value Problem 

By W. E. Simon 

1. Introduction. Numerical techniques for the solution of initial value differ- 
ential equations whose solutions are well behaved are well established. However, 
if the solutions are known to have movable poles, certain computational difficulties 
arise. One of the most straightforward and simple numerical techniques is that of 
continuous analytic continuation, which is simply an extension of the solution 
from point to point with a truncated Taylor series. Unfortunately, the rate of con- 
vergence of the Taylor series goes to zero as a pole is approached. In addition, a 
good estimate of the error of the solution is difficult to obtain. 

2. Analysis. Consider the initial value problem 
= 

f(X, y, Y , 
k. 

(1) Y'(x0) = Yo' [1 = 0, 1, 2, , (k-1)]. 

Now y' may be expanded in a truncated Taylor series about any nonsingular point, 
xp, in the form 

(2) Yn1 (x) = E (x)[x - [1 = 0,1, 2, , (k-1)J 

A sequence of x's may be chosen and y' computed for each of these points in suc- 
cession by use of Eq. (2). Thus the technique of continuous analytic continuation. 
A primary difficulty with this technique, if constant increments of x are used, is 
that the rate of convergence of Eq. (2) is a function of x. In particular, if y(x) ex- 
hibits poles, Eq. (2) does not converge at all at these poles. In order to circumvent 
this difficulty for regions distant from a pole, we make the following requirement: 

(3) yn(xp)1xp1-x | (i = 1,2, ,n). 

We now choose xp+l so that Eq. (3) is satisfied, where e is some arbitrarily small, 
positive number. This ensures that the truncation error is uniformly small in x. 

As the sequence xp approaches a pole of the solution, (xp+l - xP) -+ 0 and 
y(xp+i) I -+ o. Using either an upper bound on Iy(xp+i) I or a lower bound on 

- xp+l-xp 1, a point Xq is chosen at which the continuous analytic continuation is 
halted and the solution resumed as a truncated Laurent series about the pole. The 
k number of unknown coefficients in the Laurent series is determined from yn'(Xq) 
[1 = O ,1, 2, (k - 1)]. Note that one of these unknown coefficients is necessarily 
the location of the pole. After the pole is passed and the criterion for using the 
Laurent series is no longer satisfied, the continuous analytic continuation is again 
picked up and continues as before. 
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A second difficulty with this procedure is the unknown error associated with the 
choice of n and e. To estimate this error, let us compute a second solution, Yn-1, 
where the new truncated Taylor series will be 

(4) Y -i(xV+i) = E Yn-1 ' (x)[xp+' 
- 

x]; [I = 0, 1,2, ... , (k - 1)]. Yn- 
to i!. 

Now consider the difference between the two approximate solutions. If the 
limit of the approximate solution approaches the solution of the differential equa- 
tion as n - co, Eq. (5), then it follows that the difference between two approximate 
solutions is the order-of-magnitude of their error, if n is sufficiently large, Eq. (6). 

(5) lim Yn (Xv+l) = y (Xp+l) 

(6) y(Xp+l) - Yn(Xp+l) = O [yn(x?+l) - Ynl1)1. 

Thus we can obtain a numerical solution to the initial value problem and an 
associated estimate of the error. Note that since the determination of the coeffi- 
cients of the Laurent series is dependent on y1(xq), the error in the location of the 
pole of y(x) causes a pole in the error of yn(x). In spite of this, the error in regions 
at a small distance from the poles of y(x) may be quite satisfactory. 

3. Application. The differential equation chosen for the application of this tech- 
nique is the first transcendent equation of Painlev6 in its canonical form, Eq. (7). 

ye 6y2 + \XY 

Xo = 0, y(xo) = 1, y (x0) = O. 

The solution of this equation is also the solution of a much larger set of equations 
that can be generated by the transformation 

Z a + by ad-bc 5 O 
c + dy 

uf = u(x) . 

Eq. (7) is particularly useful for a test case, since if the parameter X is setto 
zero, the solution is periodic with period 2.4286508 and poles occur at 1.2143254 
+ m-2.4286508 (m = 0, 1, 2, . .. ), where the numbers are good to the last figure. 
According to [1], the first pole occurs at 1.2068 for X = 1 and at 1.179 for X = 5. 
The error of these determinations is not specified. In addition, a Taylor's series 
solution for X = 5, x = 0.1, has been used to determine y = 1.031141446, correct 
to the last place. 

A program was written for a small digital computer, IBM-1620, to obtain the 
solution of Eq. (7). A value of 6 was taken for n, and e was specified as input data. 

The truncated Laurent series used in the neighborhood of a pole is given by Eq. 
(8), where xt is the location of the ith pole. 

1 + 0 XXxi(X _- i) 
Y =(_ )2+( i + ? + 0 (g - Xi) _ X( 

(8) ~' (x - Xi)2 (X - i+0+ ( (X-X 1)0 

X(x - x') ? hOX - Xi)4 + 0. (X _ 
- 
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Note that since the differential equation is second order, all except two of the 
constants in the Laurent series may be determined by substitution into the differ- 
ential equation. The two undetermined constants are just "xi", the location of the 
pole about which the expansion is performed, and "h," the coefficient of (x -X)4. 

The "X" which appears in some of the terms is just the parameter of the differential 
equation. Thus Eq. (8) and its first derivative, evaluated at xc,, the point at which 
the continuous analytic continuation is halted, provide two equations for the two 
unknown constants, "xi" and "h." These equations are solved numerically for the 
values of the two constants. 

Eq. (8) was used whenever I y > 10. Tabulated results for x, y, and y' are 
given in Tables 1, 2, and 3 for e- 0.1 and for X = 0, 1, and 5. Comparison of 
computed locations of poles is given in Table 4. 

A plot of the error estimate and the actual error is given in Figure 1 -for the 

TABLE 1 

Numerical Solution of First Painlev6 Equation for X = 0 (e 0.1) 

x Y Y 

0.0 1.0 0.0 
0.1 1.0303028 ? 1* 0.612182 ? 1 
0.2 1.1249984 ? 3 1.302034 ? 3 
0.3 1.2966686 ? 5 2.172699 ?S5 
0.4 1.571030 ? 1 3.392648 ? 8 
0.5 1.997030 ? 2 5.42110 ? 2 
0.6 2.670095 ? 4 8.49381 ? 3 
0.7 3.790274 i 8 14.62214 ? 5 
0.8 5.82948 ? 2 28.0786 ? 1 
0.9 10.12278 i 4 64.3828 ? 4 
1.0 21.7699 i 1 203.140 ? 2 
1.1 76.5088 ? 8 1338.43 ? 2 
1.2 4872.6 I 4 680260. ? 90. 
1.3 136.238 ? 2 -3180.38 ? 7 
1.4 29.0068 ? 2 -312.442 ? 3 
1.5 12.25439 it 5 -85.7728 ?i 5 
1.6 6.72609 ? 2 -34.8305 ?E 2 
1.7 4.24741 ? 1 -17.39252 ?I 6 
1.8 2.932152 ? 7 -9.84053 it 2 
1.9 2.158607 ?t 5 -6.0193 ? 1 
2.0 1.674589 ? 5 -3.844853 ? 2 
2.1 1.363221 ? 5 -2.476392 ? 4 
2.2 1.165527 i 6 -1.52718 ? 1 
2.3 1.050540 ? 7 -0.79791 ? 2 
2.4 1.002539 ? 9 -0.17192 ? 3 
2.5 1.01546 ?t 1 0.43286 ? 4 
2.6 1.09090 ? 2 1.09175 ? 5 
2.7 1.23865 ? 2 1.89753 i 8 
2.8 1.47998 ? 3 2.9943 i 1 
2.9 1.85563 i 5 4.6430 ? 2 
3.0 2.44402 ? 7 7.3752 ?t 3 

* When decimal point is not given, error estimate applies to last figure of the 
primary number. 
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TABLE 2 
Numerical Solution of First Painleve Equation for X = 1 (E = 0.1) 

x y Y 

0.0 1.0 0.0 
0.1 1.0304705 4? 1 0.61723317 +- 9 
0.2 1.1263659 +- 1 1.322915 4? 2 
0.3 1.3014527 +- 5 2.222736 4? 4 
0.4 1.583054 ?I 1 3.491589 ?- 8 
0.5 2.022771 +- 2 5.46135 ?- 1 
0.6 2.721242 +- 4 8.83743 ?- 3 
0.7 3.890886 ? 8 15.31805 ? 5 
0.8 6.03834 ? 2 29.7143 ?1 
0.9 10.62261 +1 3 69.3163 4- 3 
1.0 23.3936 ?- 1 226.372 ? 2 
1.1 87.7732 ?4 8 1644.70 ?4 2 
1.2 22031. +4 3 6540000. ?4 1000. 
1.3 114.969 4? 1 -2465.53 ?4 4 
1.4 26.7678 ?- 1 -277.130 ?4 2 
1.5 11.61357 ?4 4 -79.4024 ?4 4 
1.6 6.43931 ?+ 2 -33.0343 +- 1 
1.7, 4.06596 ?- 1 -16.86170 ?4 3 
1.8 2.77520 ?4 1 -9.820007 ?4 7 
1.9 1.98846 +- 1 -6.28341 ?4 3 
2.0 1.46727 +4 2 -4.31718 +E 6 
2.1 1.09940 +t 2 -3.13233 +- 9 
2.2 0.82710 +- 3 -2.3643 +- 1 
2.3 0.61893 +- 5 -1.8273 +4 2 
2.4 0.45738 +- 6 -1.4194 +- 2 
2.5 0.33274 ?4 8 -1.0813 +- 2 
2.6 0.2400 ?E 1 -0.7776 ?4 2 
2.7 0.1768 ? 1 -0.4869 +- 3 
2.8 0.1426 ?4 2 -0.1970 +1 3 
2.9 0.1376 == 2 -0.0999 +1 3 
3.0 0.1628 ? 2 0.4075 ?E 4 
3.1 0.2197 + 3 0.7340 +E 4 
3.2 0.3106 ?- 3 1.0906 ?1 5 
3.3 0.4396 ?i 4 1.4993 ?i 7 
3.4 0.6135 4? 5 1.9996 ?1 9 
3.5 0.8448 ? 6 2.661 r- 
3.6 1.1553 ? 7 3.612 ? 2 
3.7 1.584 + 1 5.092 + 4 
3.8 2.207 +E 2 7.596 ?I 7 
3.9 3.174 ?E 2 12.25 ?1 1 
4.0 4.820 ? 4 21.98 ? 3 
4.1 8.028 + 9 46.16 ? 8 
4.2 15.74 + 2 125.3 ? 3 
4.3 43.3 ? 1 571. == 2 
4.4 371. ? 3 14300. ? 200. 
4.5 432. ? 3 -18000. ? 200. 
4.6 45.6 1 -616. ?I 2 
4.7 16.21 ? 3 -131.2 ? 3 
4.8 8.190 ? 9 -47.78 ? 8 
4.9 4.874 ?- 4 -22.73 ?1 3 



TABLE 2-Continued 

x y Y 

5.0 .3.166 ? 2 -12.78 ? 1 
5.1 2.148 + 2 -8.114 ? 6 
5.2 1.471 + 1 -5.656 + 4 
5.3 0.9825 ? 8 -4.233 ? 2 
5.4 0.6078 ? 6 -3.319 ? 2 
5.5 0.3108 + 5 -2.646 ?- 1 
5.6 0.0754 + 4 -2.067 ? 1 
5.7 -0.1031 + 2 -1.500 ? 1 
5.8 -0.2238 + 1 -0.908 ? 1 
5.9 -0.283530 ? 3 -0.282 ? 1 
6.0 -0.2796 ? 1 0.362 ? 1 
6.1 -0.2112 ? 2 1.005 ? 1 
6.2 -0.0079 ? 4 1.634 ? 1 
6.3 0.1156 ? 5 2.261 ? 1 
6.4 0.3746 ? 6 2.934 iE 1 
6.5 0.7073 ? 7 3.756 ? 2 

TABLE 3 
Numerical Solution of First Painleve Equation for X = 5 (e = 0.1) 

x y Y 

0.0 1.0 0.0 
0.1 1.03114135 ? 1 0.6374382 ? 9 
0.2 1.1318367 4h 3 1.406446 ? 2 
0.3 1.3205939 ? 7 2.423004 ? 5 
0.4 1.631197 ? 1 3.888328 ? 8 
0.5 2.125995 ? 2 6.20004 ? 2 
0.6 2.927444 ? 5 10.23704 ? 3 
0.7 4.300645 ? 9 18.21009 ?- 6 
0.8 6.90629 ?+ 2 36.7527 ?+ 2 
0.9 12.78504 ? 5 91.8844 ?- 5 
1.0 31.0712 ? 2 346.765 ?- 3 
1.1 158.785 ? 2 4001.88 ? 8 
1.2 2346.9 ? 1 -227390. ? 20. 
1.3 68.6973 ? 6 -1139.21 ? 1 
1.4 20.50311 ? 9 -186.582 ? 1 
1.5 9.63692 ? 3 -61.3238 ?- 3 
1.6 5.48114 ? 1 -27.8424 ?+ 1 
1.7 3.404024 ? 6 - 15.49615 ? 5 
1.8 2.160451 ? 2 -10.04859 ? 4 
1.9 1.305679 ? 2 -7.33151 ? 4 
2.0 0.656339 ? 7 -5.77313 ? 5 
2.1 0.13706 ? 1 -4.64463 ?- 5 
2.2 -0Y27377 + 2 -3.55759 ?- 3 
2.3 -0.56914 ? 2 -2.31633 ? 4 
2.4 -0.73030 ? 3 -0.72467 ? 2 
2.5 -0.74047 ? 3 0.683817 ?- 3 
2.6 -0.59383 ? 3 2.23744 ?+ 2 
2.7 -0.29641 i 2 3.69233 ?- 3 
2.8 0.14224 ? 2 5.08168 ?- 3 
2.9 0.72492 ? 2 6.62986 ?+ 2 
3.0 1.48991 ? 2 8.845698 ?4 4 
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TABLE 4 
Comparison of Computed Pole Locations for First Painlev6 Equation 

X 0 

f - 0.1 Exact 

1.2143258 ? 6 1.2143254 
3.64288 + 1 3.6429762 
6.07142 ? 4 6.0716270 

8.5000 ?4 2 8.5002778 

6 = 0.1 Davis (Approx) 

1.2067373 ? 6 1.2068 
4.4519 = 2 3.0982 

X =5 

1.1793581 ? 6 1.179 

4 
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case of X = 0. In this case, the solution is periodic, and it would be possible to obtain 
the solution for all x's by translation of the solution in the first period. Since the 
interest here is in the case where the solution beyond the singularity is not known, 
and is not necessarily periodic, the numerical solution is continued through the 
singularities as if its periodic nature were unknown, thus obtaining, by compari- 
son of the numerical solution with the known periodic solution, the actual error 
of the numerical procedure. This can then be compared with the estimate of error 
obtained by the numerical computation. 

4. Conclusions. A numerical technique for the solution of initial value differential 
equations whose solutions exhibit movable poles has been proposed. Application 
to the first transcendent equation of Painlev6 has given very satisfactory results. 
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