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method, the adjoint equations are homogeneous and the nonhomogeneity is post- 
poned to the algorithm (9) for obtaining the corrections. As to which method is 
faster or more efficient, it is not possible at this time to say. Some time later Brown 
[3], in connection with a problem in the theory of hydrodynamic stability, inde- 
pendently introduced a method using initial value problems, but convergence to the 
solution was achieved partially by trial and error so that the method is not fully 
automatic. This objection was overcome by Nachtsheim [41 who used a perturbation 
scheme and iterated to the final solution; he was compelled, however, to estimate 
more constants than are truly required. Although all of these investigators worked 
on the same problem, none of them seems to have been aware of his predecessors. 

The principles of the method presented~here may be applied to solve nonlinear 
eigenvalue problems, since, in solving initial value problems, the computer is in- 
different to linearity. Of course, the equations of differential corrections are linear 
in any case, and so are their adjoints; but in this case the coefficients depend on the 
previous iteration of the eigenfunctions. In nonlinear cases the solution cannot be 
arbitrarily normalized because, in contrast to the linear case, the eigenvalues de- 
pend on the amplitude of the eigenfunctions (e.g., in determining the period of a 
cubic spring). In fact, for nonlinear cases, the eigenvalue problem would have to be 
solved many times in order to grasp this dependence, and the relation between 
the initial value of yr-+ and the amplitude would have to be established from the 
eigenfunctions. It might be pointed out that nonlinear eigenvalue problems cannot 
be solved using methods involving a secular equation (except for periodic solutions 
when one frequency dominates, in which case the method of equivalent lineariza- 
tion.can be used as an approximation), and, in this respect, the present method is 
superior. 
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A Special Technique For The Determination 
of Eigenvalues 

By V. 0. S. Olunloyo 

1. Introduction. We consider the problem of determining anl eigenvalue of pre- 
scribed order of the system 

(1) y" + (x) + My = O, y(O) = y(l) = 0, > 0 

We specifically wish to avoid the eigenvalues of lower order. We may begin with a 
reasoned guess based partly on classical inequalities. The problem then boils down 
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to the determination of the eigenvalue nearest a given number, a situation which 
was studied by Kryloff and Bogoliuboff [1]. One deals essentially with intervals 
containing the nearest eigenvalue as an interior point, the main task being to reduce 
these intervals as much as possible. When the guessed value is nearer another 
eigenvalue other than the specific one sought, there is, in general, a tendency to 
drift towards the nearest eigenvalue. It is shown here how this drift may be checked. 
In this paper, the theory of Kryloff and Bogoliuboff is examined. An error is pointed 
out and the theory is reduced to a numerical method. An interesting computational 
example involving Mathieu functions is constructed and treated. 

2. On the Theory of Kryloff and Bogoliuboff. Details would be found iH [1]. We 
consider the minimization of 

(2) Jk(?) = f [( + (a + k)?12 dX/ f .2 dx. 

? is expanded in a Fourier trigonometric series of the exact eigenfunctions ys. 

(3) t(x) - Z hiyi, h1i = f (x)yi dx. 

On assuming the series is twice differentiable, one gets 
00 00 

(4) Jk() = Z h2(Xi - k)2/E h2, 
i-1 X-1 

where the eigenvalue nearest k is Xi, say. The co-ordinate functions employed, 
m 

(5) 'pi-\/2 Sin rix, rm-EAdt 
o-1 

lead to 

(6) f [EL( m)Eki(t;i) - vat,, 'iI dx = 0 (i = 1, 21, ** , 

where v is a Lagrange multiplier to be determined and 

( 7) p 4 = J(gm)- 

A string of inequalities based largely on Parseval's relation and the Cauchy-Schwarz 
inequality. lead eventually to 

(8) 0 ? dm (X - k)2 < 7?m, 

where 

_ _+ _ _+_ 4 . 

01) 17 [+(In+1 )2Lr2 (in + 1)4ir4 

1 + 1)8'r? 

(10) A 2 {I(X+ )2 _ ' - 21V(jXii +Vi 1)JI 

and 

(11) X = k +4 V(dm 07nm) 0< 0 < 1. 
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If do, < tim we can conclude that Xj < k + Vtim but, if di > im , we get two inter- 
vals, 

(12) (I) k i -V(dm-tm) (II) k i +Vdm 

In the first, no real eigenvalue exists and, in the other, there is at least one. The 
neighbouring eigenvalues may then be isolated with m sufficiently large. 

As m -a x, (I) and (II) approach and 

(13) V/dm- /(dm-n m) < t/im. 

The vital intervals are, therefore, 

(14) (k - V/dm I k - /(dm - tim)) ?and (k + V/dn, k + V\(d. - am)). 

The determination of the sign of the correction in [1] may, in certain circumstances, 
be replaced by the suggestions which follow. 

3. Reduction of the Theory to a Numerical Method. We now examine how to 
decrease an interval containing an eigenvalue. We note that tim is not explicitly 
known, since A is unknown, and has to be estimated. An upper estimate, while 
logically safe, is, of course, not necessarily 'best'. When a > 0 and a" < 0, as, for 
example, in problems involving Mathieu functions, the case is clear. In any case, 

(15) A < I (X1 + )2 I + I al" + 21 'x/(I Xi + I). 
Thus tm increases with A. We consider now in detail the choice between the two 
vital intervals. There is a criterion that settles where X, is. In the derivation of this 
criterion, however, an error occurs in [1]. Let the end parts of interval (I) be k1, k2 
and the eigenvalue nearest t be Xi, say. One may deduce 

10 dim- (Xkj -k)2 < im, 

(16) 0 < d2,- (k2 - k2)2 < n 

where 

Fi+fk l+ ffl+ I /dmi1 A2 

(17) tim - (m + 1)2,r2 J (m + 1)4ir4 

A2 (m + 1)8er 

k has been replaced by the upper bound k + \d,,z . dl,, and d2,m are obtained from 
ki, k2, respectively, by repeating previous routines. Separate consideration of the 
cases k < X,, k > \, is necessary. 

Case A. If k < Xi, then k + \Idm 2 j2 ki J 

(18) 0 < Xjk- V < \/dm (dmit-m). 

In [1] it is stated that 

(19) V/dm (dmt-m) < 2V\dm 

This is false because it implies 

(20) 1 - >(1 -U) < 2 u=M < 1, 
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i.e., 0 < 1 -u/2 < V(1 -u) and -u + u2/4 < 1 -u and u2 < O for real u. 
Moreover, this error is carried forward in the derivation of two inequalities for 
di,m and d2,m . In fact, 

(21) /dm - \/(dm -fm) < V/r7mX 

therefore, 

(22) 0 ? (Xij- ki ) V! \/m. 

It is clear that in the case k < X-, Xk1 = 

(23) di,rn < (Xkl - ki)2 + -m :im + rm Em. 

Case B. If k > Xj, one sees similarly that d2,m _ em. If k # Xj , either Case A 
or Case B will hold. We thus have a criterion for deciding which vital interval to 
choose. Clearly, if dim > Em then X3 < k and if d2,m > Em then Xi > k. Thus, starting 
with a specific value of k, one may calculate di , Tim and hence ki, k2 . One can then 
find di,m and d2,m and also Em . Upper bounds being needed for flm and Em, one has 
now two vital intervals. The sign of dl,m - Em or d2,m -em is determined. Whichever 
is negative belongs to the relevant vital interval. The subsequent systematic reduc- 
tion of that interval may be achieved as follows. Suppose the left-hand interval is 
the vital one; one calculates a value of V/(dm -lm) to define k3, etc., until, however, 
dm < fm . This, therefore, establishes the feasibility of a practical use of the theory 
in [1]. Drift towards an unwanted eigenvalue can now be checked. If one made an 
upper estimate that was too high (or a lower one, too low) one would tend to drift 
towards the next higher (or lower) eigenvalue. This drift can be detected when 
dim and d2,m are calculated. It can be rectified by reducing k somewhat arbitrarily 
until the left-hand interval becomes relevant. Care must, of course, be exercised to 
ensure that the reduction is not so drastic as to create a lower bound that is too 
small. 

4. A Numerical Example. We seek only the fifth eigenvalue of the system 

4y + (X + 200 Sin2 irx)y 0 = y(O) =y(), 
(24) 

u(x) = 200 Sin2 Irx, aA 200 and a- = 0. 

By Sturm's comparison theorem [2], 

(25) X5 + 200 > (5)2 _ As 

(26) 46.74 _ X5 _ 246.74. 

The weakness of this inequality shows the nontriviality of the chosen example. 
One may quickly obtain an upper bound by the simplest variation method, viz., 
Rayleigh principle. WAe choose y = Sin 5&rx and get X5 < 147. Thus 

(27) 46 < X5 < 147. 

Start with the convenient guess k = 100. The equations (6) are set up with 
m 

(28) E = E a(V/2 Sin pirx), 
p==l 

(29) Ek(~m) = Z [k - (pr)2 + 200 Sin2 rxlaV/2 Sin p7rx. 
p=1 
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The cases p = 1, 2, 3 and 4 need special care. 

(cl2 + 100c1 + 5000 - v)a, + (-50c1 - 50c3 - 2500)a3 + 2500a5 = 0, 

(c2' + 2500 - v)a2 + (-50c2- 50c4)a4 + 2500a6 = 0, 

(-50c3 50c1 - 2500)a, + (C32 + 5000 - v)a3 

+ (-5Oc3 - 50c5)a5 + 2500a7 = 0, 

(-50c2 - 50c4)a2 + (C42 + 5000 - v)a4 

+ (-50c4 - 50c6)a6 + 2500a8 = 0. 

For m - 4 _ i _ 5, 

2500ai-4 + (-50ci-2 - 50ci)ai-2 + (5000 + c, - v)aj 
(31) 

+ (-50c, - 50ci+2)ai+2 + 2500ai+4 = 0, 

with 

(32) a =0, t>m, cs k+100-(i r)2. 

The lowest latent root is then extracted and A and tim are calculated. The calcula- 
tion was based on a 20 X 20 matrix. 

(33) A(X)= (X + 200)2 + 400w2 + 400rxr/(X + 200), 

where X denotes an upper bound to Xi. 

A(147) = 3472 + 4001r2 + 400rxr/347 = 146766. 

With m = 20, k = 100 we have m- = 13170. Also, dm was found to be 14073.75. 
Here di > 71m, dm - tim 903.75, V\dm = 118.63, V\(dm - tm) -30.062. Thus we 
have the interesting result that Xs lies either in (-18,70) or (130,219). But as 
46 < Xs < 147, we see that either Xs lies in 

(34) (46,70) or (130,147), 

which are much narrower intervals. To determine actually which is the relevant vital 
interval, we calculate d1,20 and d2,20 by previous routine for k1 and k2. A certain 
amount of flexibility may be very useful here. One may choose to calculate d for two 
other values of k instead of 69.938 and 130.06. This involves an identical amount of 
labour. We could consider mean points, viz., 58 and 138. In addition to providing 
estimates in their own right, they should be combined with the previous results. By 
taking arithmetic means systematically one may succeed in accelerating convergence. 
The purpose of the illustration can thus be regarded as fulfilled. The exact solution 
can be expressed as in [3] as a Mathieu function of an irrational order and Xs is 
slightly over 55. Incidentally, X6 is 164 - 1 and X4, which is negative, is about -34. 
The exact values could have been interpolated between table values for rational 
order Mathieu functions but the figures quoted are within a whole number of the 
exact result. The idea of trying 58 and 138, in particular, and also of the value of a 
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numerical method based on the theory of Kryloff and Bogoliuboff will now be 
apparent. 
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Integration Rules of Hypercubic Symmetry over 
a Certain Spherically Symmetric Space 

By J. N. Lyness 

Abstract. A theory of integration rules suitable for integration over a hypercube 
and having hypercubic symmetry has recently been published. In this paper it is 
found that, with minor modification, this theory may be directly applied to obtain 
integration rules of hypercubic symmetry suitable for integration over a complete 
n-dimensional space with the weight function exp( -x12-X22 - -xn2). As in 
the case of integration over hypercubes, an n-dimensional rule of degree 2t + 1 
may be constructed requiring a number of function evaluations of order 2tnt/t!, 
only. 

1. Introduction. In this paper we are interested in generalising the theory and 
results of investigations about the use of symmetric integration rules for a hyper- 
cube, given in Lyness [2] and [3] which we refer to as Part I and Part II, respec- 
tively. The particular generalization that we consider here is the construction of 
rules of the type 

L f exp[-eXp 2- x 2 2 -Xn'2]f(x1 , X2, X. Xn) dx1 dx2 ... dx 

-EAi f({li y l2iX*** n) 

Such integration rules have been considered before (Stroud and Secrest [4]). It is 
conventional to term such a rule to be a rule of degree d if the approximate equality 
may be replaced by an exact equality whenever f is a niultinomial of degree less 
than or equal to d. 

Most of the results about symmetric rules for integration over hypercubes in 
Parts I and II may be derived in almost identical form for this integral. To avoid 
unnecessary repetition, we refer to Parts I and II for the details of the derivations 
of such results; we indicate here only the differences or modifications in these re- 
sults as they occur. 
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