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-1. Introduction. In the theory of random signals and noise [1], [2], [31, [4] we 
encounter linear or nonlinear systems with forcing terms which are random proc- 
eses. Such systems often may be described by sets of differential equations of the 
form 

(1.1) dxi 
fi((xi, * x) + n;(t), Xi(O) = i (i = 1 m), 

where the functions f! are deterministic and the forcing functions ni(t) are random. 
Each function n,(t) is "white noise," with cross-correlations 

(1.2) En;(t)nj(t - T) = aijb(T). 

The matrix (ao.) is positive semi-definite, since 

XjXjo = E I [ Xini(t)]2dt 2 0. ii~~~~~~~~~~~~ 

In many cases of interest, however, the matrix aoq is not positive definite. For 
example, if 

xt + Mx + sin x = n(t) 

is described as a first-order system 

dxl 
d = X2 , 

d-2 = -sin xi -IX2 + n(t), dt 

then the matrix (ari) has the form 

Numerical methods for linear systems of the form (1.1) are given in [7] and [8]. 
These methods do not apply to nonlinear equations. 

The purpose of this paper is to provide an analysis of the random error which 
occurs when the stochastic, nonlinear equations (1.1) are approximated by finite- 
difference equations. For At > 0 we approximate the random vector x(t) defined 
by (1.1) by the vector x") defined by the difference equation 

(1.3) x(n+l) = xn) + Atf(x (n) + g(fn) (n = 0, 1, ... ) x() 

where t = nAt and where g(n) is a pseudo-random vector simulating a random 
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Gaussian vector g with 

(1.4) Egi 0, Egigj = ijAt (i, j = 1, ,m). 

The main result is the following: Suppose that the functions fi(x) have con- 
tinuous, bounded derivatives up to the fourth order. Let R be any bounded region 
of m-dimensional space. Let R1 C R c R2, where RI is a region whose boundary lies 
in R and where R2 is a region which includes the boundary of R. Then we shall 
prove that, as At - 0 with n = [t/At], 

(1.5) Pr {x(n) E R1} + O(At) < Pr {x(t) E R) ? Pr {x(n) E R2} + O(At). 

We shall also prove convergence in distribution. 
The author hopes that this paper will stimulate research on more sophisticated 

difference methods for stochastic differential equations. The usual error-analyses 
made for Adams or Runge-Kutta methods do not apply to stochastic equations 
(1.1), since any sample of the white-noise process n,(t) with a,, > 0 is required to 
be everywhere unbounded, discontinuous, and nondifferentiable. 

2. The Equivalent Markov Process. To many mnathematicians the definition of 
white noise presented in current books and papers lacks rigor. Therefore, we shall 
define the differential equations (1.1) to be equivalent to the equations (2.1) for 
a continuous Markov process xi(t) with initial state xi(O) = (i and with limit- 
moments 

lim E = f(xx,.. 
_t-o At 

(2.1) lim E X-= aXj 
A t-o At 

lim E 0AxAAk 0 (i,j, k = 1, .. , i). 
At-0 At 

For all t > 0 these limits are supposed to be attained uniformly in x. Under these 
conditions, as it is proved in [2], the random vector x at time t > 0 has a probability- 
density P(t -* x, t) defined by the Fokker-Planck partial differential equation 

(2.2) _O = ?[fi(x)PI + - Z oi, _ 
at 71 a4xi 2 i,j-1 axiax 

with 

(2.3) P(t -* x, 0) = -(x 

The density P satisfies the relations 

(2.4) P_O, fPdx= 1 

and the Chapman-Kolmogorov identity for At > 0: 

(2.5) P(E -4 x, t + At) = f P(t -- 7, At)P('q -4 x, t) d-. 
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If m ? 2, it is conceivable to apply numerical methods to the Fokker-Planck 
equation. If m > 2, existing numerical methods are usually impractical. 

3. The Approximate Probability Density. Corresponding to a fixed time-incre- 
ment At > 0, we shall define an approximate probability-density Q(t -+ x, t) = 

Q(- x, t; At). For 0 < t ! At, we approximate the Fokker-Planck equation 
(2.2) by replacing fi(x) by the initial value f'(t). We then write 

(3.1) At _Ef , 2 f,,i j + 
di (O < t ? At), 

(3.2) Q(-+ x, O)= O(x - . 

We now use the analogue of the Chapman-Kolmogorov identity to define Q at 
later times t = nAt. For n = 1, 2, * we recursively define 

(3.3) Q(t x x, (n + 1)At) = f Q(t - n, At)Q(i1 -+ x, nAt) dq 

or, equivalently, for n = 1, 2, * 

(3.4) Q(t- x, (n + 1)At) = Q(t ,nAt)Q( x, At) d1. 

By (3.1) and (3.2), the function Q(tq -k x, At) is the probability density of an 
m-dimensional random Gausian variable x with mean values and second moments 

(3.5) , m Lx = ri + (At)f(,qi), E(xi - ,AO(xi - ) = (At)uai, 

Therefore, if we set v = x(f) and x = x(n+l) in (3.4), we see that 

(3.6) x( +l) = x(n) + Atf(x(")) + g(n) I 

where g(n) is an m-dimensional random Gaussian variable which is independent of 
x(") and which has the first and second moments 

(3.7) E9,(f) = 0 E;(n)gj (f) = (At)o. (i, j = 1, * *, m). 

For later analysis we shall require an explicit form for Q(t x, At). Let U be 
a real, unitary matrix which diagonalizes (a>): 

(3.8) UU* = I, U(oY;j) U* = diag(X1, * Xr ? ** 0) 

where X1 _ ... > Xr > 0 are the positive eigenvalues of the semi-definite matrix 
(aj.). We assume r ? 1. For 0 <t ? At set 

(3.9) z = U(x - -f()t). 

The equations (3.1), (3.2) now give 
m 

-+ x, t) = H(z, t), H(z, 0) = a(Z) = II 5(Z)), 

(3.10) dH 1 

2: Xi CZ,2 Teet 2 fei 
Therefore, 
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(3.11) Q(t x, At) = h(z, * Zr)5(zr+i) ... *(z) 

where 

(3.12) h(zi* zr) = (27At) exp(- 
N 

E )2 

An integral of Q times a function , takes the form 

fQ(4 x, At)b(x) dx =f. |fQ dxl ... d xdm 

(3.13) 

-=f fh(zi, ***,Zr)( + f()At + Uzl) dzI; *dzrX 

wherez' = col (z1, * ,,O, **,0). 

4. The Related Difference Method. To use the difference equation (3.6) in 
practice, we must have some method of simulating samples from the m-dimensional 
Gaussian distribution with first and second moments given by (3.7). This numeri- 
cal problem is discussed in [5], [6], and [8]. There is a slight complication if (c,j) 
is not positive definite. 

We desire to write (aij) in the form 

(4.1) (O;ij) = TT*. 

If the eigenvalues Xi and the unitary matrix U used in (3.8) are easy to compute, 
we may simply set 

(4.2) T = U* diag(\/l , *.**,V /Xr,,O, * *, O). 

If the Xi are unknown, we find T as follows: By successively completing squares, 
we may write 

m 

(4.3) ZZEijxixj = Yi2 + Y22 +...+ y2 
i,jl 

where, for some r indices a < 3 < ... < p, 

Yi = caxa +( )Xa+i + +( )Xm, ca #O, 

(4A) ~~Y2 = COO, + ()X#+1 + ***+ ()XIn, co 0 O, 

yr = CpXp +( )X+l + * * + ( )Xm, Cp $O. 

If (4.4) is written in the form y = Sx, where S is a matrix with r rows and m 
columns, the identity (4.3) shows that (aij) = S*S. Therefore, we may let T = 

S* to satisfy (4.1). 
We now set 

(4.5) 9(n) = 'TWn). 

The components of the vector w(n) are required to simulate independent sanmples 
from the Gaussian distribution with zero mean and unit variance. This problem is 
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solved by the techinique of Box anid Mtuller [5]. The factoorizat ion (4.1) produces 
the required momiients (3.7). 

5. Analysis of the Error. The true solution x(t) is a randomii vector with proba- 
bility-density P(t -* x, t). The approximate solution x(n, is a random vector with 
probability-denisity Q(S -* x, nAt; At). It is too much to hope that 

(5.1) lim Q(( -* x, nAt; At) = P(t -* x, t). 
a t O ;n At - t 

In fact, even if there is no randoiniiess, i.e., if all o-j = 0, the relation (5.1) does 
not hold. If there is no randomiiness, both P and Q are delta functions. The spike of 
P occurs at the solution of the differential equation dx/'dt = f(x). The spike of Q 
occurs at the solution of the difference equation Ax = f(x)At. Although the spikes 
of P and ( occur at nearby points, the arithmetic difference between the two delta 
functions does not tend to zero. 

Let. R be a region, for example, the open unit splhere. We may conjecture thlat 

(5.2) Pr {X(n) E RI - Pr {x(t) CR 

as At -* 0 and nAt -* t. This conjecture is also false. Again suppose that all aij = 0. 
Let x(t) lie on the boundary of R. If the nonrandom difference-approximation x(n) 

approaches x(t) from the interior of R, t.hen for all At > 0 

Pr {X(n) E R) = 1 but Pr {x(t) E R) = 0. 

Therefore, we Imlust prove a weaker result.. We will show that, for all sufficiently 
smooth statistics or testing functions +(x), the expected value of the random num- 
ber ?(x(n)) approaches the expected value of the random number +(x(t)) as At -* 0, 
where n = [t/At], with an error which is O(At). 

For any function +(x) with continuous derivatives up to order p, we define the 
number II ? fl, to equal the least upper bound, for all x, of the absolute values of the 
function 4 and of all of its partial derivatives of order ?p. We shall assume that 

(5.3) flfi(x) 114 < 00 (i = 1, ... * m). 

In differential equations (1.1) of physical interest this assumption is not too un- 
reasonable if the given functionsf,(x) are redefined as smooth at any discontinuities 
and as bounded with bounded derivatives for very laige, physically unrealizable, 
moduli of the state-vector x. 

THEOIREM. Sutppose that || f,(x) 114 < 00 (i = 1, * * n, in). For t > 0 let x(t) be 
the random vector defined by the stochastic differential equations (1.1). For At > 0 
and n = [t/At] let x(n) be the random vector defined by the difference equations (1.3). 
Let '(x) 114 < (x). Then 

(5.4) E'(Xx(n) = Eo(x(t)) + O(At) as At -O0. 

Before proving the theoreme, let us slhow how the inequalities (1.5) follow from 
the theoremii. Let R1cRcR2I, and let the boundaries of these regions have positive 
distances fromii each other. Let 01(x) be defined as 

(5.5) ol(x) = 1 in R,, o1(x) = 0 outside R. 
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Between the boundary of R1 and the boundary of R define +l1(x) as some function 
with continuous derivatives of order <4 with 1 > +1 (x) _ 0. We now apply (5.4) 
to obtain 

Pr {x(n) E R1} < E41(x (n) 

(5.6) = Eoj(x(t)) + O(At) 

< Pr {x(t) E R} + O(At). 
Now define ?)2(x) as 

(5.7) ?2(x) = 1 in R, 02(x) = 0 outside R2, 

with ?2(x) varying smoothly from q5 = 1 to q5 = 0 between the boundaries of R 
and R2. By (5.4) 

Pr {x() E R2} _ E4)2(x(8) 

(5.8) = E02(x(t)) + O(At) 

> Pr {x(t) E R} + O(At). 

This establishes the inequalities (1.5). 
Proof of the Theorem. The expected values of O(x(n)) and O(x(t)) are defined as 

E4(x (n) = f Q(- x, nAt; At)+(x) dx, 

(5.9) 

E4(x(t)) = f P(t > x, t)4 (x) dx. 

For t > 0 we have, as At -> 0 with n = [t/At], 

(5.10) f P(t -> x, nAt)>(x) dx = f P(- x, t)4(x) dx + O(At). 

Therefore, it will suffice to prove that 

(5.11) f [P(t -> x, nAt) - Q(- x, nAt; At)jI4(x) dx = O(At). 

We nlow define linear operators A and B which map functions of x into functions 
oft: 

A,0 = fP(- x, At)4)(x) dx, 

(5.12) 
Bq5 = fQ(Q --x, At)+5(x) dx. 

By the Chapman-Kolmogorov identity (2.5) for P and by the definition (3.3) for 
Q, we have 

I P(t -- x, nAt)ck(x) dx = Aq5 

(5.13) 
I Q(t x, nAt; At)4,(x) dx = B n4. 
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Therefore, by (5.11), we wish to prove that as At -O 0 

(5.14) (A n - Bn)o = O(At) if nAt < t. 

We factor the difference An - B' as follows: 
n-I 

(5.15) An - Bn = - EA ''(A - B)B 
r-o 

First consider A - B. For any function 4t(x) with 11 4V 114 < co and any initial vector 
t define a function of t for 0 < t A t: 

(5.16) g(t) = [P( x, t) -Q(t -+ x, t)]It(x) dx. 

Then 

(5.17) g(At) = (A - B) 1t. 

First we note that 

(5.18) g(0) = f [5(x - t) - 6(x - t)Iql(x) dx = 0 

Next we evaluate the first derivative: 

g'(t) =( f (P (Q)x) dx 
(5.19) 

= f [LP(Q - x, t) - MQ(t --+ x, t)j]t(x) dx, 

where, by (2.2) and (3.1), 

LP = -_ dd [fs(x)P] + 2 E adx ax a 

(5.20) MQ a+2Q ixj 

Introduce the adjoint operators L* and M*: 

L*t ,(x) = Efi(x) d+ c +i a 
2 

M*4p(x) = aT+ 2 adxax 

Then, for 0 < t < At, (5.19) yields 

(5.22) g'(t) = [P(t - x, t)L*4t - Q( x, t)M*A] dx. 

In passing from (5.19) to (5.22) we have used the fact that our solutions P and Q 
of the Fokker-Planck equations (2.2) and (3.1) tend to zero as 1 x oo. There- 
fore, 

(5.23) 9'(0) = L*0 - M*O = 0 for x = 
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Next, 

(5.24) g"(t) = f [P(- x, t)(L*)2 I-Q(t-xx t)(M*)2\] dx. 

But 

(5.25) (L* )20 I'II 4' 114 and I(M*)2,p I <_ /AlI '1 114 

for some constant ,u independent of the function , and of the point t. Therefore, 

(5.26) 1 g"(t)j < 2jull V 114 (0 < t < At). 

Incidentally, g"(0) $ 0 if the fi(x) are not constant. But for some t in the range 
0 < t < At, 

(5.27) g(At) = g(O) + Atg'(O) + I(At)2g"(t). 

Therefore, by (5.17), (5.18), (5.23), and (5.26), 

(5.28) (A - B), | (At)2 )I 
2 114. 

From the estimate (5.28) and from the factorization (5.15) it is clear that we 
must examine the effect of the iterated transformation Bi on the norm 11 114. 
Again let *(x) be any function with 11 4 114 < oo. We will show that there is a con- 
stant X which is independent of 4', of At, and of t such that, for 0 < At ? e inde- 
pendent of t and of 4', 

(5.29) 1j Bip 114 < (1 + XAt)f 4' 114 

From the definition (5.12) and the identity (3.13) we have 

(5.30) Bip = f fh(zi, I ..., zr) 4'( + f(t) At + U*zl) dz1 ... dzr. 

The Gaussian function h is positive and has integral = 1. Define a new variable 
y = t + Atf(t). Since 11 fi 114 < ?, the function Bo' has continuous partial deriva- 
tives of order _4 with respect to (, * , m and also with respect to Yi, , yi . 
From (5.30) we have 

I Bo h I ** |h ?dzi ... dzr < 11 0 llo. 

Differentiating (5.30) p _ 4 times with respect to yi, y,, ... , we find 

(5.31) fPB *h 0 ..(y + U*zl) dz1 ... dzr. 

Therefore, if p < 4, 

(5.32) B d 

But 

(5.33) -a = y + a_ =a + t E a(*) d 

The required inequality (5.29) now follows from repeated application of (5.32) and 
(5.33). 
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From (5.29) we find, for 0 < At < e, 

(5.34) 1j B^p 114 < (1 + XAt)v J 4 114. 

By (5.28) and (5.34) 

(5.35) I(A - B)BVq5I _ I(At)2 jj B' 114 < I(At)2(1 + XAt)p 11 4)114. 

By the definition (5.12), 

(5.36) 1 AM/ I ? P(t -x, At) dx 11 & lo = 11 llo+. 

From (5.36) and (5.35) we have 

(5.37) 1 -n-l-v(A - B)B"O I _ 
I(At)2(1 + XAt)v 11| ( 114 . 

From (5.15) we conclude, for nAt < t,. 

(5.38) I (An - Bn)4) I < i( At)2 11 4? 114(XAt)-'{ (1 + XAt) - 1} 

At -' II4X'(ex' - 1)At = O(At). 

This completes the proof of the theorem. 
Let us define the distribution functions 

539F(a, *.* am) = Pr Ixi < a,, x. < am}, 

(539)jFat(al, *, am) = Pr (xi(n) < a,, ... , x"(n) < am. 

At points of continuity of the distribution function F we have the following result: 
THEOREM. If (al, * , am) is a point of continuity of the distribution function F, 

then 

(5.40) lim FAt(al, * , am) = F(ai, * , am). 
A t-0 

Proof. For any two vectors u and v we define the inequality u < v to mean 
ui < v, (i = 1, *.. , m). 

At almost all pairs of points u < v the increment function Pr tu < x < v} is 
continuous [9]. We will first show that, at any pair of points of continuity of the 
increment function, we have 

(5.41) Pr{u<x(n) <v} v PrIu<x<v} asAt-*0. 

Let e > 0, and let e = (e,e, , e). By (1.5), 

Pr tu < x(n) < v} ? Pr tu - e < x < v + e} + O(At), 

Pr tu < x(n) < v} > Pr tu + e < x <v - el + O(At). 

Keeping e fixed and letting At -O 0 we find 

lim sup Pr tu < x(n) < v} _ Pr tu-e < x < v + e}, 
At-0 

lim inf Pr tu < x(n) < v} _ Prtu + e < x < v-e}. 
At-0 

We now let e -O 0. Because of the continuity of the increment function at u < v, 
we conclude 

lim sup Pr tu < x(n) < v} < Pr tu < x < v} ? lim inf Pr tu < x(n) < v}. 
At-O At-O 
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The required limit (5.41) follows. 
Let a be a point of continuity of the distribution function F. Let an arbitrarily 

small number a > 0 be given. Choose u < a < v so that 

(5.42) Pr tu < x < v} > 1- a 

and so that u < v and u < a are points of continuity of the increment function. 
By the limit (5.41), there is a number 5 > 0 so small that 

(5.43) Pr {u < x(n) < v} > 1 -2a if At _ 5. 

From the last two formulas, we have 

(5.44) Pr Ixi < u1 or X2 _ U2 or .. *or Xm. um} < a 

and, if At < 6, 

(5.45) Pr (xi 
n < ul or X2 U2 or ... or Xm <n < UmI< 2a. 

By (5.44), we have 

0 ? F(a) - Pr tu < x < a) < a. 

Similarly, if At < 6, we find from (5.45) 

0 < Fat(a) - Pr tu < x(n) < a) < 2a. 

But, by (5.41), there is a positive number 61 < a so small that 

I Pr {u < x(n) < a) - Pr tu < x < a}j < a if At -< 61 . 

The last three formulas imply 

IF(a) - F,t(a)j < 4a if At-< 61. 

Since a > 0 is arbitrarily small, we have established the limit (5.40). 
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