
Symmetric Integration Rules for Hypercubes 
III. Construction of Integration Rules 

Using Null Rules 

By J. N. Lyness 

Abstract. A new operator, which we term a "Null Rule" is defined. Its properties 
which are analogous to those of an integration rule are investigated. It is found to 
be useful in the construction of high-dimensional integration rules of moderate 
degree. A set of integration rules Wt(+ are derived which are more economical in 
the number of required function evaluations than the previously published 0(+) 

1. Introduction. This part of this paper follows directly from Parts I and II 
(Lyness [1] and [2]). In Part I we introduced the n-dimensional basic rule (R (n) and 
the composite rule R('). These rules have hypercubic symmetry, that is, they are 
invariant under any rotation or reflection of the hypercube into itself. In Part II 
we defined and discussed the projection and extension of an n-dimensional rule of 
degree d, to form an n'-dimensional rule (n' 5 n) of degree d' and determined the 
relation between d and d'. 

In this part we exploit the formalism of Part II with a view to determining high- 
dimensional rules of moderate degree. As an intermediate step we define the "Null 
Rule" and determine some of its properties. We then use it as the basis of a re- 
cursive procedure. This procedure is used to determine a set of integration rules 
W+) and several other closely related sets. 

2. Null Rules. The n-dimensional rule R(n) is defined in terms of n-dimensional 
basic rules in Part I by the relation 

(2.1) R(n) _(n 

where 

(2.1a) = 1. 

It is convenient to introduce an operator which has certain of the properties of a 
composite rule. We term this operator an n-dimensional null rule N(') and it is 
defined by the relation 

(2.2) N(n) _ i E (n 
where 

(2.2a) E 0. 
All null rules have the property that they integrate any nonzero constant function 
(incorrectly) to give the result zero. For if f 1 we find that 

(2.3) N = j = O. 
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Any null rule operator may be formed by taking the difference between two 
different composite rule operators. Thus the properties of null rules follow closely 
those of composite rules. For example, the derivation of the error expansion of the 
null rule (2.2) above is almost identical with the derivation of the error expansion 
[1, (3.2)] of the composite rule given in detail in Sections 2 and 3 of part I. We define 
the error coefficients 

(2.4) CUI.2u.. .2ss(N(*') 
= X 

and the operator j2. by 

(2.5) 2*(NX")) = j. jf28R,). 

The expression for %2,(6R(R)) is given in equations [1, (3.4)]. In terms of these quan- 
tities we find 

(2.6) N(AIf = iEi(n) _ If = Efs.(N(n))f 

in direct analogy to expansion [1, (3.22)]. It follows from the above definitions that 

(2.7) coo...o(N(")) = 0, 
(2.8) flo(N(*))f = 0. 

The values of these quantities if N(n) is replaced by a composite rule R(^, are 1 and 
P)A respectively. 

We may form the convolution product of any two one-dimensional operators 
whether they be composite rules or null rules or both. The definition is the same as 
for composite rules, namely 

(2.9) T = R S t,R j ksk M J 

It should be noted that T is a null rule if either R or S or both are null rules. 
Equation [1, (3.25)] expresses the error coefficients of an n-dimensional convolu- 

tion product R1*R2*... *1R of one-dimensional composite rules R; in terms of the 
error coefficient of each one-dimensional composite rule. This result and its proof 
is unaltered if any or all the composite rules R, are replaced by null rules. In par- 
ticular, [1, (3.26)], which is a special case of [1, (3.25)], may be applied to a null 
rule, giving the result 

(2.10) C2812.2 .*2n((N('))") = c2,1(N(1))c2,,,(N(1') ... 

3. The Projection and Extension of Null Rules. It is convenient to introduce a 
particular n-dimensional null operator 0 (n This operator has the defining property 

(3.1) e )f(Xl, x2, I * *x) = 0 

together with the consequent properties 

(3.2) / * GL(oi, -2, . , a,) = 

(3.3) OM') + aR(al a2, a,oc) = 1(aa2 ai) 

The projection of basic rules and composite rules was defined in Section 2 of 
Part I in terms of a projection operator. We define the projection of a null rule in 
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the same way as the projection of a composite rule, in terms of the projections of its 
constituent basic rules. Thus 

(3.4) 6P( E ri =" r- P(Tai(n)) 

the final term being defined in [2, (2.2)]. This indicates that a null rule projects onto 
a null rule. We note that an important property of projection is retained, namely, 

(3.5) N(r)f(xi, x2, * , Xr-1) = (P)(NATr)))f(xi X2, , r-1). 

In keeping with this definition we see that 

(3.6) (PO n) = 0(n-1) 

and that we may define a zero-dimensional null operator o(0) in analogy to 4 of 
[2, (2.6)] with the properties (3.2) and (3.3) above. In addition, all null rules 
project onto 0(0). Thus 

(3.7) VP(N(lN ) = <(o) 

We may derive an expression for the projection of the convolution product 
Si(a)*S2(t) of two null rules or a null rule and a composite rule SI(') and S2("). This 
expression is precisely the same as if S1(8) and S2(t) were composite rules (given in 
[2, (2.9)]), and is 

(3.8) T(SP(') * S2)) = s {s(SI(8)) * S2(t) + tS1 * ) 

whether S1(8), S2) be null rules or composite rules. Applying this to the n-dimen- 
sional product null rule (N(')" we find 

(3.9) P((N (1))n) = 9(n-1) 

This result contrasts with the corresponding result for a composite rule [2, (2.10)], 
namely, 

(3.10) '( (R(1')n) = (R n-1 

The extension of a null rule to a higher dimension is another null rule defined 
n terms of the extension of basic rules as follows: 

(3.11) E8.+(v)N(8) = E88+l(v) E ri.Ri(S) = IE aE8+1?(R (8) 

where E,8+l(v)6ti(8) is as defined in [2, (3.5)]. The formula for the extension of the 
s-dimensional null product rule (N("))' is simpler than [2, (3.13)] the corresponding 
formula for the composite rule (R(1))8. It appears that 

(3.12) En(.)(N(l))8 = n! * (R(V)n-s * (N(1))8. 
s!i(n - s)! R()1(()8 

In Sections 5 and 6 we shall make use of null rules of the type 

(3.13) S = (E n(,) - E8n(0))(R(a)8. 

We note that 

(3.14) S X (E88+1(a)- Ea8+1(O))R(a) X o(0). 
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Moreover, it follows from (3.12) and [2, (3.13)] that 

(3.15) (E8a+'(a) - E88+'(0))61(ax)' = ((R(a) -(R(O))8+ 

4. The Degree of a Null Rule. The degree d = 2t + 1 of a composite rule ROO 
has been defined both in Part I in terms of its error coefficients, and in Part II in 
terms of the functions which it integrates exactly. One of these definitions states 
that the degree of a rule is 2t + 1 or greater if 

(4.1) coo...o(R"'f) = 1, 

(4.2) c212 2...Uj8k(Rn) = 0, 1 < E 2s8 < 2t + 1, 
il~ 

and the other states that the rule is of. degree 2t + 1 or greater if 

(4.3) R(")f= I(n)f when f E C(+), 

the set 4() being defined in [2, (4.4)]. 
In constructing rules of degree 2t + 1 it is useful to be able to use the property 

that if R1 and R2 are of a particular degree, so is XR1 + (1 - X)R2. This trivial 
property follows directly from either of the above definitions. 

The definition of the degree of a null rule is chosen so that it retains this property. 
The definition is as follows: 

Definition. A null rule N(n) is of degree 2t + 1 or greater if 
n 

(4.4) c212 ... 2#8%(N (n) 0, 2s; < 2t + 1. 

From this follows trivially the alternative definition corresponding to (4.3) above, 
namely, that a null rule N(n) is of degree 2t + 1 or greater if 

(4.5) RB)ff= 0 when f E 4!+ . 

We may construct a rule R ()f by combining null rules N, and composite (or 
basic) rules R;(n) as follows: 

R = E () + XiNi( 

where 

St= 1.' 

It follows from the definitions (4.1) to (4.5) that if all the N and R are of 
degree d, the rule R(') is also of this degree. 

It is useful to express the degree of the product null rule (N')) in terms of 
the degree of the one-dimensional rule N('). To do this we make use of the definition 
(4.4) and the expansion (2.10). If N(1) is of degree 2t + 1, it follows that 

c28(N(?) = 0, 2s _ 2t. 

Thus the product 

C2.(N()) )c2 2(N(l)) *Cc28(N(l)) =0 if any 2s, < 2t + 2. 

This product is therefore zero if the sum of the n positive numbers 2sf, 282, *, 
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2s. is less than n(2t + 2) for in that case at least one number 2si is less than (2t + 2) 
and the corresponding term C2,i(N")) is zero. Using (2.10) this shows that 

C2s1282... 28n((N"))n) = 0, E2s, < n(2t + 2) - 1, 

and the definition of degree (4.4) shows that the degree of (N') n is n(2t + 2) - 1. 
We state this result as a theorem; 

THEOREM 4.1. If the null rule N(l) is of degree d, the product null rule (N(') n is 
of degree d' = n(d + 1) - 1. 

The null rule 0(8) is of any degree since O(B)f is zero for aniy function. This gives 
the following result: 

THEOREM 4.2. If 
N(n) ((8) 

then N(n) is of degree at least 2s + 1. 

5. A Set of Null Rules S(+) . In Part II it was shown that starting with a t-di- 
mensional rule R(+A1 of degree 2t + 1 we could construct a greater dimensional 
rule of the same degree by using the formula for rule extension. Thus the rules 
Ett+i(0)R(ti), Et+2 (O)Ett+i(O)Rt)? could be considered as the results of a recursive 
procedure 

(5.1) =(+) -En-_(0)Rt7n n > t, 

which commenced with the rule R 1t. However, this first rule might be difficult 
to construct and it would be useful if we could derive a recursive procedure of this 
type which started with a one-dimensional rule R( )1 of degree 2t + 1. In this sec- 
tion we investigate this possibility. We base this attempt on the following theorem: 

THEOREM 5.1. If R(+11 is an (m - 1)-dimensional rule of degree 2t + 1 and if 
S(') is an m-dimensional null rule having the properties 

(5.2) (S+)1) = (rni) 

(5.3) S'if = I(r)f when f E et +i, 

it follows that 

(5.4) R(m) = E_1(O)R(mJj' + SQn 

is an m-dimensional rule of degree 2t + 1. 
Proof. If R(m) is given by (5.4) above it follows, using (5.2), that 

(5.5) 6)(R(n)) = R(rn') + O(rn-i) - R(m) 

Since R(+'-) is of degree 2t + 1, we have 

(5.6) R(+P')f = I(m-')f when f E (D(m-1) 

The elements of 4(jl) are functions of m - 1 variables. So using equation [2, (2.3)] 
and [2, (4.2)] we have 

(5.7) R(m)f = W(R(m))f = R(+m-)f = I(m-')f = I(m'f when f E C(rn-) 

We now consider f E t+ . These are functions of mn variables having xi2x22 ... 

xm as a factor. The rule E1_i(O)R(m 1) evaluates these functions at points at which 
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they are zero. Thus 

(5.8) E1_j(O)R(+'1f = 0 when f E 't+. 

(This is a special case of Theorem 3.1A of Lyness [3].) Equation (5.8) together 
with (5.3) above gives 

(5.9) R(r)f = Em (O)R(+7j)f + S(m)f = I(m'f when f E + 

Since 

(5.10) =+_ t+1) U t+ 

(5.9) and (5.7) together combine to give 

(5.11) R(n)f = Inmf when f e 4(T) 
and this is the condition that R(m) is of degree 2t + 1. This establishes Theorem 5.1. 

A converse of Theorem 5.1 is true. This is 
THEOREM 5.2. If R(1) and R(+"i) are any two m- and (m - 1)-dimensional in- 

tegration rules of degree 2t + 1, then the null rule 

(5.12) S("') = R(+) -E nl(O)R(+ 

has the properties 

S(m)f - I(n')f when f E rt+1 

(5.13) (?)(S(^) ) = ~(n-i). 

The proof uses the argument of the proof of Theoremn 5.1 in the reverse order 
and is not given explicitly here. 

The value of these theorems as the basis of a method of constructing integration 
rules depends on the difficulty involved in calculating a particular null rule S(m) 
which satisfies (5.2) and (5.3). It appears that to satisfy (5.3) is the principal 
difficulty. For once we have found either a rule or a null rule T('m which satisfies 
the nonlinear equations (5.3), that is 

(5.14) T(m)f = Itm)f when f E 4t+i 

We need only set 

(5.15) S(M) = T(r) - Emi(O)(ip(T(rn))) 

and it is apparent that S() satisfies (5.3) and also that 

(5.16) 6P(S(m)) = 0P(T(m)) - = O(m-l ) 

so that S(') satisfies (5.2) also. 
In the next section we indicate a systematic approach and calculate a set of 

integration rules using this procedure. Before doing this, we examine the con- 
struction of the sets of integration rules determined in Part TI. We determine pos- 
sible S(n) which, used recursively in the relation 

(5.17) R =() -Em_I(0)R(+n-1) + S (m, 
lead to these sets of integration rules. 



SYMMETRIC INTEGRATION RULES FOR HYPERCUBES. III 631 

The rules (Gt+) are generated by setting 

(5.18) R'+"l = Gt+i = ri(RA), 
(5.19) se(+) = (Gt+,)m -E G 

The rules Etn(O)Gt+i may be generated using (5.18) and 

(.0S+ = (G+1)m - Em_j(O)(Gt+1)m', m < t 

(5.20) ~ rn = 
t.) 

,>t. 

The rules G) may be generated using (5.18) and 

S(+) = (G+,)m - E(O)(Gz+1)m', m < t - 1, 

(5.21) S = 1 [ (E-.(, Et)-1(0) (R 

Se+1 =(), m >t. 

These sets of rules were not in fact determined by this procedure. This is the 
reason for the somewhat obvious form of (5.19). 

6. The Rules Wt+i. We construct in this section a set of integration rules 
W+1 using the procedure of the previous section. To do this we construct certain 
of the 8(+) . There is of course a very wide choice about how to do this. In this 
example, we have to make several arbitrary choices. These are made with a view 
to being as economical as is convenient in the number of points used by the con- 
structed rule; the criterion of convenience here is based on the amount of analytic 
work involved. Thus the rules constructed will not be minimal rules. Nor will they 
be unduly extravagant rules in terms of the number of points required. 

We set 
(6.1 ) sm) = 0(m) m > t + 1 

and we expand the relation (5.17) to give 

(6.2) Wn) = E(n)(O)SMN + E(n)(O)S(t-1) + E(n)(0)S(t-2) + E(n)(O)W(t-3) 

For the sake of definiteness, we set W(+7j) to be (Ge+i)t-3 though there are better 
choices. Thus 

(6.3) S+ = (Gt+l)m - E%-1(?)(Gt+1)m m I t-4. 

We now determine null rules S(+) (m = t - 2, t - 1, t). The choice of W(") 
does not directly affect the form of S(+) (m > t - 4). At a later stage we may if 
we like make a different choice for W(t3) without having to recalculate S+1 
(m > t - 4). 

We deal with these out of order, taking S(+lj) first. We consider a null rule of 
the form 

(6.4) S = Xe(Et_1 (a1-i(O) - ) . 

This satisfies condition (5.2), namely, 

(6.5) fP(S1t') - 
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The two elements of 4t+1 are x .2 . xt_l and x14x22 *. xv_I. Thus condition 
(5.3) gives two equations which we use to determine Xt.-i and at-i . These equations 
are 

(6.6) 
~~~t+l 1 X2 * t- =I XX2 * t-1 

(6.6) S*+l z1z2 *z xt_l = Xt _X .2 . xt-1 

Substituting (6.4) and the values of I(t-1)f we find 

(6.7) ~~~Xtilat- = 1/31, 
2t- = 1/5*3t1 

which have the solution 

(6.8) xt-l= (5/9)t 14 

(6.9) aCt-l= = /(3/5). 

Thus we set 

(6.10) S(+j') = (5/9)t-'(Et':(\/(3/5)) - E'_l(O))((R(\/(3/5)) 2 

The contribution of this null rule to the rule W(+) of (6.2) is Enl(O)S(+-1) and so 
uses all points used by the basic rules 

(R(O)n-a * (R(V/(3/5)), = 0, 1 ... 
I t 1. 

The null rule S(t1 may be constructed in the same way. We choose 

(6.11) S(+) = Xg(E-I(at)-Et-1(R) -) ((Rt)) 

which satisfies condition (5.2). The set 5t + contains only one function x12x22 . . . Xt2. 

Applying condition (5.3) we find 

(6.12) +1XX2 Xt= I xx2 *Xt 

which gives 

(6.13) ta2t= 1/3t. 

The null rule S('1 appears in W(n) in the combination Etn(O)S( ) and uses all the 
points used by the basic rules 

i(0)n-a * (R(at), s = 0,1, *... , t. 

We choose at so that these points coincide as far as possible with those used by 
EUn (O)S(+i1) and so we set 

(6.14) at = V/(3/5), 

(6.15) Xt= (5/9)t, 

giving 

(6.16) S") = (5/9)t(Et_1(V/(3/5)) -E'-,(O))((R(N/(3/5))) 

In the special case t = 2, the construction of St+) is now complete. The resulting 
rule is given previously ill Part II and is E2n(0) (G3)2. 
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The construction of S(+12) is more complicated. We deal in detail with the case 
t > 4. We write down a null rule of rather a complicated form 

S(t-12) = E-32 (,i ) -2 _(0) ) (&(R ,i) - =+ x:7 ~(Et1'-$) -Et3 
i 

(6.17) + qo (E1-2(V/(3/5)) - E'-(0)) * ((R(V/(3/5))t-3 

+ t (Ez2(a) - E:-2() )((t - 3)I() + (R(a)) * OR(a))"). 

Here a, ,B, 'y,, , no and ni are parameters. This expression satisfies the requirement 
(5.2), namely, 

P(8(t+2)) = O(t-3) 

It is also necessary to satisfy requirement (5.3) which gives the four nonlinear 
equations 

Sj2+1 X2 2=X2 . . . =*Xt.2 

Mt-2) 4 x2 *. X_2 = P-2)X142x2 Xt2_ 

(6.18) t+l x2 t-2 = X2 * t2 

S(t-2 Xl6XX2 ***Xt2_2 = I(t-2)Xl6 x2 ... Xt2_ 

(6.19) St(+l)1 XI 2 3 ........ Xt- 2 = I(-)XI4X2 X32 Xt-2_ 

These equations give 
? 32a2t-6 + Z niyi2s-4 + no(3/5)t 2 =1/3 

t 

[o 4 2t-6 + 22t-4] v 2t-2 t P -1 t-3 

(6.20) t-2 _ + (t - 3)2t] + oiyi + no(3/5) = 1/5.3ts 

- [36 a2(6 + (t - 3)34a2t-] + E iyi + ,o(3/5)t = 1/7.3t-3 
t - 2 

(6.21) - [2i32a21 4 + (t - 4)32a2t-2] + j y'2t + no(3/5)' 1/52 3-4, 
t - 2 

respectively. 
Taking the difference of the final two equations we find 

(6.22) t- 2a2t6(#2a2) =(A I 5)+ 4 

We are now in a position to justify the choice (6.17). Since there are four equa- 
tions of the type (5.3) we need four adjustable parameters. Thus we might have 
hoped at that stage that the first term with two values of i would suffice. Since 
we are using all the points required by the second term we include it as it brings in 
another adjustable parameter no at no cost in the number of points. However, (6.22) 
indicates that we need another type of rule. For if we were to set v in (6.17) to be 
zero, equation (6.22) would be a contradiction. (This is a direct verification of 
Theorem 3.4 of Lyness [3].) The precise form of this additional term is obtained if 
we include in S(+2) a basic rule (R()*(6(a))t3 but not R(a)t-2. There are now 
enough parameters to include only one term in the summation in the first term of 
(6.17) and to omit the suffix i. 
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The solutions to equations (6.20) and (6.21) are two two-parameter systems; 
we use parameters flo and X; we set 

(6.23) A 3= 4 {1 - 
q()-r 

7.25(t -2) 

and 

SA = +1 if A > 0, 

SA =-1 if A <0. 

Theni the parameters in (6.17) are: 

a2 = 3/5 + (-XA. i= /(SA + X2))V\/j A 1, 

(6.25) 32 = 3/5 + (-X T (t - 3)V(SA + X2))V/I A 1, 
2= 3/5 +A/(X/iADJ, 

v {1 - 71(9/5)t2}/(1 + SAX2)3t-212a2t-6 

(6.26) - SAX2{1 - no(9/5)t-2}/(1 + SA X2)3t-2 2i-4 

In the case of rules of degree 7 (t = 3) the null rule St+12) is not of this form. 
The set 04' contains only three functions. Thus in place of (6.17) we set 

j 

(6.27) S4( ) = Lqi(Eo1(Qyi) - Eo'(0))4 + 7o(Eo1(V/(3/5)) - Eo'(0))g. i=l1 

Putting j c 1 leads to equations with no real solutions. Thus we set j = 2 and 
write S4(') in the form 

(6.28) S4(1) = 7o(R(V(3/5)) + 71(R(QY1) + 172(R(Y2) - (n70 + X11 + 172)G(0). 

Equations (6.18) and (6.20) are valid with t = 3. The solutions in terms of qo and 
X are 

,y2 = 3/5 + A/(XV\/ A J), 
(6.29) 2 

72 = 3/5 -X\A/lA J, 

=1 - SAX2(1 - 7nC(9/5))/3(1 + SAX2 ),Y12 

(72 = (1 - X1o(9/5))/3(1 + SAX2 )Y22, 

where A and SA are given by (6.23) and (6.24) above. 
The points used by the rule W(+) may be arranged to lie within the hypercube 

by a suitable choice of the parameters. Once X has been chosen we may choose no 
to make A in (6.23) as small as we like. Thus we may make the values of a 2, #2, ly2, 
or of Y12 and -y22 as close to 3/5 as we like, so ensuring that the points for function 
evaluation lie within the hypercube. 

The rule W(+) is a two-parameter system. The number of points v(W(+)) given 
below may not be valid if the parameters are chosen to result in a coincidence of 
points which are in general distinct. In general 
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+ t-2'- (t-2) + 2 (t-) n2t-1, t > 4, 

Here 
rLn3 = vEn3Glta 

(6.33) 

+ t.2 -2 n 
+2 t1 + 

n 
n[ - ] (t-3) 

and the square brackets indicate the integer part of the enclosed number. 

7. The Rule W*+). There is one very simple adjustment which can be made to 
W() which in some cases results in a more economical rule. 

In Section 3 we noted that the null rule 

(7.1) S = (Et1(a) - 2Ee(O))G(a)t ) 
and in Section 4 we showed that a null rule which projected onto ()(t was of degree 
2t + 1. It was also stated that any rule formed as a linear combination of rules and 
n1ull rules of a particular degree was itself of that degree. We define a new rule 
wt+* as 
(7.2) W(+4 = W(4) + (5/9)7(Et8(V(3/5)) - Et8(O))((R(V(3/5)))t, n > t, 

ad thuses the same points as Wte with the important exception that it replaces 
points used by the basic rule tatO)enul(Vru(3/5))t by points used by (V(3/5)) 
Thus 

(7.3) v(WS = ) - v(WEt) 2 (t ) + 2 . 

TABLE 1 

It is only possible to choose X so that the integration rules TV8n1 (or 
WW1*) require only function evaluations within the hypercube of integra- 
tion for certain values of n and t. Some of these values are indicated by a 
X (or *) in this table. The absence of a X (or *) indicates that for the cor- 
responding values of n and t no such choice of X is possible. 

n = 3 4 5 6 7 8 9 10 >11 

t = 3 X* X* X* X* X* X* X* 
4 x x x x* x* X* X* >K* X* 
5 > X X X* X* X* X* X* 

6 x * X* X* X* X* 
7 * x_ x x 
8 * x* 
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For sufficiently large n, 2' exceeds 2t( ) and the rule W(n) is more economical than 
the rule t+) . However, there is a range of values of n and t for which the reverse 
is true. Table 2 illustrates this situation. 

The rule W(n) may be generated directly using the recursion relation of Section 
5, namely, 

(7.4) W -E((O ) E + s+1. 
Here we set 

(7.5) W+ t+ 

and 

(7.6) S(m) = (5/9)t(E_1(\/(3/5)) - E!->(0))(R(V(3/5))) X'1 m > t. 

This rule is not the only rule which may be considered as an adjustment of 
W+1. In fact, any n-dimensional rule R('4 may be obtained from W(+) by adding 
the null rule RI+i - Wt+) and so may be considered as an adjustment. However, 
this adjustment of W(nl to W(n)4 is a simple adjustment and in some cases results 
in a considerable reduction in the number of function evaluations required. Other 
adjustments are not considered here. 

8. The Choice of Parameters X, qo. Besides altering the rule, we may try to 
reduce the number of points by a suitable choice of the parameters fo and X. We 
may attempt to choose the parameters X and o in such a way that the coefficient of 
some basic rule is zero. The principal terms in (6.31) are usually those involving 
the highest powers of n. The terms n' and nt'l arise from the basic rules (R(O)'t* 

(V(3/5))t and R(O)n-t+1*1(V(3/5))t' arid the coefficients of these terms are 
independent of X and 77o. 

The ternm t . 2t-2(t-2) arises from the basic rules at(0) n- t+2*R(t-2), where R( -2) 

may be (R(a)t-3*(R(f), &(R,)t-2 or t(V(3/5))t-2. It appears that neither of the 
coefficients of the first two of these may be set to zero. However, the coefficient of 
(R(O) n-t+2*(t(V\/(3/5))t-2 is zero if we set f7o =n io, where 

(8.1) fl = (5)t2(n - t + 2){J(n - t + 1) - 1}. 

The corresponding coefficient in W({) is zero if we set '10 - o where 

(8.2) o* (5)t(4(n - t) + ) 

IABLE 2 
The number of function evaluations required by certain n-dimensional 
integration rules of degree 9 

n (G )n E4n(O)(G5)4 nI,(n) 5()| W,(n) W6(n)* Wff5(n)* Boundt 

6 15,625 5,385 1,735 713 653 537 477 344 
10 9.8 X 106 62,201 11,801 1 5161 4,981 2,825 2,645 2,344 
15 3.1 X 1012 380,301 52,701 27,341 26,921 38,269 37,849 26,320 

t The final column is a lower bound on the number of points required by any 
rule of degree 9 of hypercubic symmetry (see Lyness [3, equation (4.5)]). 
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This choice defines the rules Wn+1 and Wt+1, respectively, the bar indicating that 
the parameter fo has been set to the value -o and -o, respectively. 

It remains to ensure that the rules W'+3 and T+V)* exist. That is to see that 
with the above choice of parameter lo it is still possible to choose X so that a, ,B, 'y 
or ,y andt 72 are real. An examination of the various equations leads to the conclusion 
that it is always possible to choose X so that IVf1 and W(nT exist, but it is not 
always possible to choose X so that all the points for function evaluation lie within 
the hypercube. Values of n and t for which this is also possible are indicated in 
Table 1. 

The number of points required by these rules is given simply in terms of ex- 
pressions (6.31) and (7.3) for v(W (n and v(W(n*) . Thus 

( 8.3 ) v ( We+l ) - v ( We += ) -2 () 

(8.4) (W(n)) = v(Win) )-2 n 

Further adjustments to these rules are possible. The most obvious is to replace 
the term Et_3(0) (Gt+1)t 3 by a different term which uses points already used by 
the other terms in the rule W(n) . Or alternatively we might choose the remaining 
parameter X so that one of ca, A, y coincides with one of the coordinates used by 
Gt+1. This would result in a reduction in the number of points. However, either 
procedure would need an inconvenient amount of analytical work, in terms of the 
relative gain in economy of function evaluations. In the case of W6(15) (see Table 2) 
the number of points required by this rule as it stands is 26,921. The term El5(0)G5 
accounts for only 60 of these points. Thus we would at the outside manage to re- 
duce the number of points to 26,861, a reduction of one third of one percent in the 
number of function evaluations. From the point of view of the practice of integra- 
tion such a reduction is not worthwhile. From a theoretical point of view, it would 
be interesting to do this if it were to result in a minimal rule, i.e., one of the set of 
rules of this degree which is most economical in function evaluations. The investiga- 
tion of minimal rules is in progress at the present time. 
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