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Abstract. Coupled differential equations which describe the simultaneous 
relaxation of different components at greatly different rates present a difficulty in 
numerical integration, since the integration interval is determined by the fastest 
rate, and the region of integration is determined by the slowest rate. In the present 
paper an integration formula is derived from the approximation that within an 
interval the first derivative can be expressed as dy/dx = -Py + Q(x). The method 
is exact if the differential equation is of the form shown, where P is constant and 
Q(x) is a quadratic in x. The algorithm utilizes only the first derivative and thus 
has a parallel to the Runge-Kutta method. For Ph small (where h is the integration 
interval) the method is identical to fourth-order Runge-Kutta and thus is correct 
to order h4. Results for the coupled chemistry of high-temperature air are compared 
with results obtained from the usual Runge-Kutta procedure. 

1. Introduction. Of the many methods available for the numerical solution of 
ordinary differential equations or sets of coupled ordinary differential equations 
[1], [2] most have specific advantages so that they are chosen for special types of 
problems. Several methods have a general applicability that has made them popular 
in a wide variety of cases. There exists, however, a class of equations which present 
considerable difficulty in their solution and for which there does not seem to be a 
simple and accurate method available. These equations can be characterized by 
the fact that the derivative of a dependent variable has a strong dependence on 
the difference between its own value and that of a slowly varying function. Because 
of this strong dependence they are sometimes referred to as "stiff" equations [3], 
[4]. An example is the simultaneous relaxation of several coupled components with 
widely different relaxation times, where the calculation interval for the entire 
relaxation region is determined by the time constant of the most rapid process. 

In problems of high-temperature air flows, the chemical rate equations some- 
times have this character, involving both fast and slow chemical rates in some 
regions of integration. Similar problems appear in the calculation of both vibrational 
relaxation and electronic excitation during the dissociation of diatomic molecules. 
It is desirable to have a method of integration which can handle the stiff-equation 
problem when it arises, but which will provide the proper speed and accuracy for 
those portions of the calculation where no special treatment is required. 

In the present report a method of integration is derived for the specific purpose 
of handling this problem. In a case where the derivative is strongly dependent on 
the value of the dependent variable, the integration formula takes this dependence 
into account directly and does away with the strong oscillations generated by usual 
integration formulas such as Runge-Kutta's. However, in the case where the 
derivative does not have this strong dependence, the method becomes identical 
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with the fourth-order Runge-Kutta scheme, which is knowing to handle such integra- 
tions with good accuracy. Thus the method can be used for a group of simultaneous 
differential equations over the entire range of integration when it is not known at 
what point within the range and for which of the variables the difficulty will occur. 
A specific application of the method to an aerodynamic chemical-kinetic problem 
is given as an illustration of the method. 

2. Derivation of Integration Formula. The integration formula used for the 
integration of the first-order differential equation 

(1) dY = f (x, y) 

is determined by the approximate treatment that is accorded y(x) or f(x, y). All 
especially convenient method is the fourth-order Runge-Kutta, where y(x) is ex- 
panded in a Taylor series, retaining terms to fourth order in the integration interval, 
h. The higher-order derivatives are determined indirectly by evaluating f(x, y) at 
three collocation points in addition to the initial point. In the usual method [13, 
these points are given by 

h h 
X2 = X1 + Y2 - Y1 + f 

h 2 

(2) X3 = X1 + 2 
h 

Y3 = + Yi f2 

X4 = X1 + h) Y4 = Y + hf3, 

where y1 = y(xi) and fi =f (xi, ye). Thus f is evaluated at two points midway in 
the interval and one at each end of the interval. The change in y over the interval 
is then 

(3) (AY)R.K. - 
h 

(fi + 2f2 + 2f3 + f4). 6 

This method of integration, although generally very satisfactory, fails badly in the 
case where the higher-order derivatives are large [3]. In particular, if Eq. (1) can 
be written approximately as 

(4) dy P(Y 

where P is a large number and 5 is a function of x, a difficulty arises because each 
derivative is P times larger than the preceding one, and so the interval h must be 
restricted by a condition that Ph is not much greater than unity. If g changes only 
a small fraction of its total range over this interval, then many steps are required 
to complete the integration. 

An alternative procedure is to express P as a power series in x and integrate Eq. 
(4) directly. An algorithm based on this procedure has been given by Certaine [1], 
where explicit functions for P and y are utilized in the solution. If, however, the 
equation to be integrated has a very general form which behaves, in some regions, 
like that described in Eq. (1), it is convenient to have an integration procedure 
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similar to the Runge-Kutta method given in Eqs. (2) and (3). This method requires 
only the evaluation of f(x, y) at specific points in the integration interval. The 
present discussion presents a method which satisfies this condition and which, for 
Ph small, is identical with the Runge-Kutta method. 

If it is assumed that Eq. (1) can be approximated by 

(5) d= f(x, y) = -P(y-y1) + A + B(x-xi) + 2 C(x-xi)' dx 2 

over the interval from x1, yi, to xi + h, yj + Ay, then Eq. (5) can be integrated 
and the value of Ay can be written 

(6) Ay = hjAFi + BhF2 + Ch2F3}. 

The functions Fn are simple exponential functions of Ph 

(7) F -= Ph; F=F-- (n - 1! f(Ph)k 
(- Ph) ko (n + k)! 

The four constants A, B, C and P can be evaluated by determining the value of 
f(x, y) at four points xi , yi in the interval and solving for the constants from evalu- 
ation of Eq. (5) at the four points. The points that are chosen are (xl, yl) at the 
beginning of the interval (a point on the true curve), two points at the half interval 
X2 = X3 = xl + h/2 and one point at the end of the interval, X4 = x1 + h. The 
values of yi at the points xi need not be specified as yet. There then results 

p = _ 
3 

S- f2 ) A4 = f1, 
Y3 - Y2 

(8) Bh [-3(f, + Py1) + 2 (f2 + PY2) + 2(f3 + PY3) - (f4 + PY4)], 

Ch2 = 4[(fi + Pyl) - (f2 + Py2) - (f3 + Py3) + (f4 + PY4)], 

where fa = f(xi, yi). Equations (6), (7) and (8) then constitute the integration 
formula 

Ay htf1Fi + [-3(fi + Pyi) + 2(f2 + Py2) + 2(f3 + PY3) - (f4 + Py4) JF2 
(9) 

+ 4[(fi + Py) -(f2 + Py2) -(f3 + Py3) + (f4 + Py4)]F3} 

where 

'= 
_ 

__3-o 

It is seen that in the limit of P -* 0 (no dependence of f(x, y) on y) Eq. (9) be- 
comes equal to the Runge-Kutta formula, Eq. (3), as would be required. If terms 
of order h(Ph) are retained in (9) the result is still identical with (3) providing 
that the values of Y2, y3 and Y4 are chosen according to Eqs. (2). In general, with 
the definitions for Y2, yi and Y4 given in Eqs. (2), Eq. (9) can be rewritten as 

(10) AY = (AY)R.K. 
- h(Ph)2 [(f2 - f3)F3 + (U' - 4f2 + 2f3 + f4)F4- 4(f, - f2 - f 4 + f4)F51 

where (Ay)R.K, is defined in Eq. (3). The additional term is fifth order and higher 
in h. 
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Thus when Eq. (9) is used with Eqs. (2) to integrate over an interval where Ph 
is small, the result will be identical with Runge-Kutta. If Ph is large, a condition 
where the Runge-Kutta method is known to be unstable, Eq. (9) supplies a far 
superior solution. 

It should be pointed out that Eq. (10) should not be used for the calculation of 
Ay, since when P is large, (AY)R.K. and the second term in Eq. (10) are each large 
numbers, while their difference, Ay, is small. Thus calculation of Ay by means of 
Eq. (10) would be a poor numerical procedure. Equation (10) is included here only 
to show the close relation between Eq. (9) and the Runge-Kutta formula, and to 
demonstrate that the error is always of higher order than that obtained with the 
Runge-Kutta method. 

When Ph is large it is generally true that the Runge-Kutta equation for Y4 as 
given in Eqs. (2) is considerably different from the correct value on the curve, and 
thus does not provide the best evaluation of the constants B and C. Since P is 
determined from points 2 and 3, Fj can be evaluated before point 4 is calculated. 
It is then possible to get a much better approximation for Y4 by integrating Eq. (5) 
with the quadratic term omitted, so that 

(11) Y4 = yj + h{2f3F2 + f(F1 - 2F2) + f2(Ph)F2}. 

The use of this equation in place of the last of Eqs. (2) disturbs the result for Ay 
from the Runge-Kutta answer only to fifth order in h and is very helpful when Ph 
is large. 

In the limit of Ph very large, Eq. (9) becomes 

lim Ay (f + PY4) - Y = 4 - Y 
Ph-o o 

Thus y approaches the equilibrium value y evaluated at x = xi + h. This limiting 
solution is obtained independent of the relations chosen between yi and xi . 

A numerical problem in the application of Eq. (9) can arise in the evaluation of 
P. Since this evaluation involves the difference of two values of f, it is possible to 
lose many of the significant figures in the P calculation if the change in ft is very 
small, and it is even possible to obtain a negative value for P. Thus as a practical 
consideration the sign of P should be tested and if it is negative it should be set 
equal to zero, so that Eq. (9) reverts to the Runge-Kutta method. 

3. Example. The example that has been chosen to illustrate the advantages of 
the present integration procedure is taken from the coupled chemical-kinetic equa- 
tions for reactions behind a shock wave in air. A discussion of the reactions and a 
complete description of the coupled equations can be found in [5]. The coupled 
equations describe the complicated time-history of the air behind a strong shock 
wave where the high-temperature oxygen and nitrogen react chemically to form 
nitric oxide, oxygen and nitrogen atoms, and various atomic and molecular ions. 
The dependent variables are these species concentrations and the enthalpy and 
velocity of the air. The independent variable, x, is the distance behind the shock 
wave and thus is proportional to the time since the reactions started. In the ex- 
ample used here the temperature immediately behind the shock wave is 3070'K 
and the density is 8.18 X 10-3 gms/cm3. Six atomic and molecular species are con- 
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sidered, and nine chemical reactions. The temperature is sufficiently low so that 
ionization can be neglected. 

The differential equation for the rate of formation of nitrogen atoms can be 
written 

dy - D1YN2YM- D1'YN yM + D2YNOYM - D2'YNYOYM - D3YNYO2 

+ D3'yNOYO + D4yOYN2 - D4'yNOYN, 

where the coefficients Di are functions of the over-all density and temperature of 
the air. The dependent variables are the species concentrations, identified by the 
various letter subscripts. There are similar differential equations for each of these 
species. During much of the flow regime the terms -D3YNYO2 and D3'yNoyo are 
considerably larger than the other terms, and thus control the differential equation. 
These are the "short time-constant" terms which are emphasized in the form of 
Eq. (4). 

The results obtained for the nitrogen atom concentrations, using the fourth-order 
Runge-Kutta scheme of integration is shown by the points in Figure 1. After com- 
pletion of each interval of integration a number of tests are performed, and failure 

10.8 

10'9 L' ' 
0 2 4 6 8 10 12 14 

x (CM) x 103 

FIGURE 1. Nitrogen atom concentration behind shock in air. V8 = 2.60 mm/iisec; PI 
= 1 atm. . Runge-Kutta, X present method. 
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of any of these tests results in discarding the last step of integration and cutting 
the integration interval by a factor of two [6]. In addition, after two successful 
steps, the integration interval is doubled, in an attempt to proceed at the largest 
possible integration interval. 

The Runge-Kutta results shown in Figure 1 show that a sharp saw-tooth rise 
results whenever the interval is doubled from 0.8 X 10-4 cm to 1.6 X 10- cm. 
This resulting calculation is in error, but not enough to fail the integration tests. 
The next step at the larger interval does fail the tests and reduces the interval 
again. At this interval the calculated points approach the correct curve. After two 
successful steps the interval is doubled, but the result fails the tests, and so does 
not appear in Figure 1. After two more steps the calculated values are very close 
to the correct curve, and when the interval is doubled the result, though poor, does 
pass the tests imposed. In this manner the integration continues the saw-tooth 
pattern. 

The method presented in the present paper was also applied to this problem 
with the same rules for testing integration accuracy and obtaining interval size. 
Equations (2) were used for Y2 and y3, and Eq. (11) was used for Ys . Equation (9) 
was then used to obtain Ay. It should be emphasized that the calculation time per 
integration step is essentially the same as for the Runge-Kutta method, since most 
of the computation time is spent in evaluating the derivatives, so that the extra time 
spent in evaluating Eq. (9) instead of (3) is negligible. The results are shown by 
the x's in Figure 1. It is seen that the interval increases to 2.56 X 10i3 cm, some 
twenty-five times larger than the Runge-Kutta step. The value of Ph for these 
steps is --75. As shown in [3], the fourth-order Runge-Kutta equations are not 
stable for this form of equation for Ph > 5.6. This is consistent with the present 
numerical results, where a Runge-Kutta step of 125 of that of the present method 
(Ph - 3) is stable, but twice that step size (Ph - 6) is not. 

The nitrogen atom concentration is shown for comparison in Figure 1 because 
it is this species which provides the numerical difficulty in the present problem. 
All the other species concentrations follow smooth curves throughout the integra- 
tion. 
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