
A Simplex Sufficiency Condition for Quadrature 
Formulas 

By C. S. Duris 

1. Introduction. In this paper a procedure is described for deriving interpolatory 
type quadrature formulas by inverting linear systems of differentiation formulas. 
Because interpolatory type quadrature formulas are uniquely given in terms of 
the interval of integration and the interpolating points (see Krylov [6]), no new 
integration formulas result. By carrying along the remainder terms for the differ- 
entiation formulas, remainder terms for the quadrature formulas can be obtained. 
Using this procedure a sufficient condition is given for a quadrature formula to 
have a remainder of the form Mf(s)(t), where f is the function being integrated 
and M is a constant. This is equivalent to the statement that the formula is simplex 
(see Dani1l1 [8]). Applications of this sufficiency condition are made, and in par- 
ticular a fairly thorough investigation of the formulas having form 

(.1) Lff(t) dt Cof(-1) + Cif(a) + C2f(3) + C3f(1) 

is made for -1 <a - < 1. 

2. Numerical Differentiation Formulas. Let y(x) E C nel [a, b]. The Lagrange 
interpolation formula with remainder, which interpolates y(x) at the n + 1 dis- 
tinct points xo , Xi * Xn XE [a, b] is given by (see [1], [2], [3], [6], or [7]) 

n 
(2.1) y(x) = n(X)y + En(Y; x), 

j=O 

where yj = y(xj) and 

(2.2) I~ (x) - fj (x - Xk) 
k=O;kpdj (Xi - Xk) 

The remainder term En (Y; x) can be expressed in terms of a divided difference as 
(using notation of [1]) 

(2.3) En(Y; x) = 7rn(x)y[xo, xl, X *, Xn, X], 

where 7rn(x) = (x -xO)(x - x1) ... (x - Xn), or in terms of an (n + 1)st deriva- 
tive as 

(n+l) 
W 

(2.4) En(y; x) = 7r(n) W (n(x)) 

where min (xo, X *, , x) < t(x) < max (xo, . *, an, x). In most of the analysis 
we will choose to use the remainder term as it appears in (2.3). 

In the following Pn is the linear space of dimension n + 1 consisting of all real 
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polynomials of degree less than or equal to n. An immediate consequence of the 
Lagrange interpolation formula is 

LEMmA 2.1. The nth degree polynomials lk'(x) for k = 0, 1, , n given by (2.2) 
form a basis for Pn . 

Using the notation 

(2.5) dj1(x) = dl1(X), 

and differentiating (2.1) we get 
n 

(2.6) y'(x) = j dn(x)y, + Rn'(x), 
j=O 

where 

(2.7) Rn'(X) = 7rn'(X)Y[Xo ** Xn I xI + 7rn(X)Y[xo I I Xn , x, x]. 

A second lemma of importance is now given. 
LEMMA 2.2. The (n - 1)st degree polynomials d j(x) for j = 0, 1, . , n span 

the space Pn-1 I and any n of these n + 1 polynomials form a basis for Pn-. 
Proof. Every polynomial q E Pn-1 is the derivative of a polynomial p E Pn 

Thus for any q E Pn- 

q(x) = p'(x) = do'(x)p(xo) + dln(X)p(xl) + * + dnn(x)p(xn). 

Hence d n (x) forj = 0,1, * , n span Pn-1 . Since 1 E Pn we know that 

don(x) + di (x) + * + dn (x) 0. 

Thus dkn(x) = -Zo;j jpk d n(x), which implies that any set dod(x), , d_1 (x), 
d J(X), ***, dnn(x) is a basis for Pn-1 . This proves Lemma 2.2. 

Let zo, z1, I , Zn be n + 1 distinct points in [a, bi not necessarily equal to the 
xi's defining the lj(x)'s. If we evaluate (2.6) at these zj's we get the following 
system of n + 1 equations: 

y'(zo) = do'(zo)yo + d1n(zo) y + * + dnn(zo)yn + Rn'(z0) 

y'(zi) - do'(zi)yo + dln(z )y1 ? *. 4- dnn(zl)yn + Rn (z1) 
(2.8) 

y'(Zn) = don(zn)yO + dln(Zn)y1 + + + dnn(zn)yn + Rn'(zn). 

Recall that yk = Y(Xk). 
The (n + 1) X (n + 1) matrix 

don (zo) dl (zo) ... dn (zo) 

(2.9) W ~don (z1) d ln (Z) ... dn n(Z1) 

(2.9)~~~~~~d'(. W= 1 Z) dn( 
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is the matrix representation of the operator d/dx on Pn with respect to the basis 

(2.10) Lk (z) = H (z Zk) for k = 0, 1, ,. 
jO0;j,-k Zj-Zk 

Thus as a corollary to Lemma 2.2 we have 
COROLLARY 2.2. The rank of W is n and every n X n submatrix of W is non- 

singular. 
Proof. It is quite clear from Lemma 2.2 that the rank of W is n. Consider now 

for 0 < i, j < n the submatrix 
n 

do(ZO) d7-(z)Zd?izo !do (zo ... d7-1(zo) dn+i(zo) ... dn 

(d2.11 ) i do" (z) *. d7(zi) d71 (zi?) ... dnn (Zi) 

don(z.) ... d71 1(zn) d n 
1(zn) ... dnn(Zn 

The columns of this matrix are the components of dkn(Z) with respect to a basis of 
Lagrange coefficients using zO, , zi 1, zig, Z1 , ,Zn for interpolating points. 
Thus by Lemma 2.2 these columns are linearly independent and hence the matrix 
is nonsingular. This proves the corollary. 

3. Derivation of Quadrature Formulas. If we let y(x) = fro f(t) dt and we drop 
the first equation in (2.8) we get the system of equations 

{$1 A1 

f f(x) dx 

di, d12 ... din Ff(zi) -Rn'(Z1) 
(3.1) l d1 d22 .. d2nj x d f(Z2) - Rn'(Z2) 

dn dn2 ... dn f(z) - Rn'(zn) 

f (x) dx 

Here we have used the notation dij- = dfn(Z) for 1 ? i, j ? n. 
Let D = (dij) be the n X n matrix in (3.1) and let Dij be the (i, j)th cofactor 

of the matrix D. Since by Corollary 2.2 we know D is nonsingular we get the follow- 
ing theorem by applying Cramer's Rule to (3.1). 

THEOREM 3.1. The n X n system of equations (3.1) can be solved to obtain the 
integration formulas 

lXk n 

(3.2) xf() dx = Z Ckf(zi) + R.(f; Xo , Xk) 
soi il 

for k = 1, 2, *. , n where 

(3.3) ik 
= det (D) 
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and 
n 

(3.4) Rn(f; Xo , Xk) = -ZCkRn (zi) 
i=1 

The term Rn(f; Xo, Xk) is the remainder term for the integration formula. It is 
interesting to note that we obtain the remainder for this integration formula by 
applying the integration formula to the negative of the remainder term for differ- 
entiation. 

A formula is said to be exact for a specified function if the remainder term is 
zero for that function. 

LEMMA 3.2. Formula (3.2) is exact when f is a polynomial of degree n - 1 or 
less. 

Proof. Since the differentiation formulas in (2.8) are exact when y(x) is a 
polynomial of degree n or less, the integration formula (3.2) obtained from (3.1) 
will be exact when f(x) is a polynomial of degree n - 1 or less. 

LEMMA 3.3. The coefficients Cnk given by (3.3) can also be found by 

Ark 

(3.5) j7k = 5 L3n'(z) dz for] = 1, 2, n 
0 

where 

(3.6) L1n-1 (z) = ni (Z- Zi) 

Proof. Since (3.2) is exact for polynomials of degree n - 1 or less we may put 
f (z) = L j (z) and know that 

(3.7) Z Cnk Ljn'(zi) = f L'-1'(z) dz. 
i=1 xo 

Noting that Ln-1 (z) = 0 if j # i and L n-1(z,) = 1 we get (3.5). This proves 
the desired lemma. 

From Lemma 3.3 we learn that formula (3.2) does not really depend on any 
of the xi's forming the system of equations (3.1) except xo and Xk . For this reason 
we will take xi = zig for 1 < i < n - 1. Note thIat if the upper limit, Xk, of the 
integration is not one of the zj's we may take k = n, because Xn is not restricted 
to be one of the zip's. 

Hence if xi -- zi+l for 1 < i < n - 1 term 7rn(x) in (2.3) becomes 

(3.8) 7r4(x) = (x - XO) (X - Z2) ... (X - Zn) (x - Xn) . 

For convenience in what is to follow we will write 7n-(x) = 7rn1(x) (x - Xn), 
where 

(3.9) 7r.nl(X) = (x - Xo) (x - Z2) ... (x - Zn). 

Thus the remainder terms for differentiation at the zj's are 

(3.10) RZ(zz) = 7r'n l(Zi)(Zi - X,)y[XO , Z, ' * ', ,Z ) X, X Zi] 
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for 2 < i ? n and 

Rn'(zl) = 7rn (Zl)y[XO, Z2 Z * zn , Xn , Z1] 
(3.11 ) 

+ 7rn(Zl)y[Xo, Z2 , , z2 Xn 1 Z1 Z1]. 

For our purposes we will modify (3.11). Note that 

(3.12) 7n(Zi)Y[XO Z2 t * * * Z, Xn Z1 Z1] 

- rn-l(Zl){y[XO, Z22, -,ZnZ11 - Y*X , Z2 XZn , Xn, Z1]} I 

and irn'(Zi) = 7r$n-(Zi) - xn) + 7rn-l(zi) . Hence (3.11) can be written as 

Rnt'(zl) = 7rn-l(Zl) (Z1 - Xn)Y[XO Z2 * Zn Xn x Z,] 

(3.13) + 7rn-l (zl ) y[XO, Z2 ).. * Zn Z1 Z11] 

Using (3.10) and (3.13) in (3.4) we get 

n 
Rn(f; xo , Xk) = -Z Ctk7r -1(Z) (zi - Xn)Y[XO , Z2 Zn Xn Zi] 

(3.14) =1 
- Clkwnl(Zl)Y[XO , Z2 Zn Z Zj I Z1]. 

4. A Simplex Sufficiency Condition. In [8] Daniell studies remainders for inter- 
polation and quadrature formulas. In this paper he defined simplex formulas. This 
definition is (see also Kunz [7]): 

Definition 4.1. A formula is said to be simplex of order m, if 
(1) The formula is exact for polynomials of degree m - 1 or less and not exact 

for xm. 
(2) If the formula is exact for any function f E Cm[a, b], then f(r) (x) = 0 for 

some x E [a, b]. 
From [7] or [8] we learn the following about the formulas given by (3.2): 
LEMMA 4.1. The integration formula 

rzk n 
(3.2) J f(x) dx = 

Cn 
G~ f(zi) + Rn(f; XO, Xk) 

oi 

is simplex of order n if and only if 

(4.1) Rn(f; xO, Xk) = Mf(n) 

where t is some point in [a, b] and M is a nonzero constant. 
Since dnxn/dxn = n!, Daniell [8] shows that in (4.1) 

(4.2) M = x dx - zi 
n! 0 - 

We are now in position to prove the following theorem which gives a sufficient 
condition for formulas of type (3.2) to be simplex. For convenience in stating this 
theorem we have defined z,+1 to be xn in (3.14). Recall also that in (3.14) 

7rn-(X) = (X - Xo) (X - Z2) ... (X - Zn). 
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THEOREM 4.2. If for s = 1, 2, * *, n the n quantities 

(4.3) (zi - z8+l) Czkrn-1(z) 

have the same sign, and CIkrXn-l(z) is zero or has this same sign, then 
n 

(4.4) Rn(f; xO , Xk) - -y[xO, , Z2, 
T 

* , i, tl] i Ckirn '(z) 
i=l 

where rnr(X) = Ir ( - X Zn+1), zn = Xn, and min (z1 , Zn+1) _ 
< max (z1, * 1, Z+i); which implies formula (3.2) is simplex of order n. 

Proof. Repeating (3.14) here we have 
n 

Rn(f; XO, Xk) = - >Ckirn -I(Zi) (Zi - Zn+l)Y[XO , Z2 Zn Zn+ Zi] 

- c -i(Zl))Y[XO Z2 Z ,n , Z, , Z1. 

Considering one term in the summation we have 

(46) iCk7n-l(Zi) (Zi Zn+l)Y[XO, Z2 ** Zn Zn+ Zi] 

(= Cikn -l(Zi){Yo[Xo Z2 , zn, zil - Y[xO , Z2 , Zn, Zn+]I}. 

By telescoping 

Y[XO Z2 ***Zn Zi] Y[XO Z2 ***,Zn Zn+l1 

(4.7) n 

= { 8[XO 7 Z2 *** Zn ) Zs] 
- 

[-O 7 Z2 *** Zn ) Zs+1]} - 
8s= 

Now note that 

Y[XO , Z2 , *Zn , Z8] - Y[ X ,Z2 ** Zn Z8+1] 

= (Z8 - Zs+l)Y[XO, Z2 , Zn, Z8. Z,S+1] 

This gives 

Y[XO Z2** - y[xo z X2 Z * Zn , Zn+1] 

(4.8) = , (zs - Z8+1)Y[XO 7 Z2 , Zn Zs ) ZS+1], , 

S=% 

Using (4.8) and (4.5) we get 
n n 

Rn(f; Xo , Xk) = -Z CJrk'1 (Zi) E (Z8 - z8+1)'[xo, Z2 . * 
i=Z 8=i 

- C1krn-1(Zl)Y[xo , Z2 , , Zn , Z1 Z1f. 

We now use the fact that E a. f b. = Z8=1 b8 = a . This gives 
n 

Rn(f; xo , Xk) = - Y[xo 7 Z2 * Zn Z8, z+1] 
s1l 

(4.9) 
* (z3 - z8+1) Z Cik~-l(Zn ) - C1kcrn-i(Zl)Y[XO , Z2 , * , Zn , Zi , z1] 

i=l 
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Hence if (z8 - z8+1) M'- C ,i(zi) do not change sign (some of these terms may 
be zero) and C k7r' -1(z1) has this same sign or is zero 

Rn(f; xo 7 Xk) = -Y[xO 7 z2 , . . . 
7 Zn 7 7 

(4.10) .{ (z,, - z8+1) E Cnk7r_-l (Zi) + Ck rn-l(ZD} 
8=1 i=1 

where min (xo, z1, , Zn+l) _ t, < ? max (xo, , , Zn+l). Noting that 

n 8 n 
(4.11) 

_ (Z8 - Z8+D)E Cnk~r1_(Zi) = X Ckrn-1(Zi)(Zi -Zn+l) 
s=1 i=1 i=1 

Xk = Zk+1 for 1 < k < n, and that 7rn (x) = rn- (x) (x -Zn+l) we get 

(4.4) Rn(f; xo , Xk) = -Y[XO , Z2 Zn , i 71]Z Cklrn'(Zi)) 

Recalling that y(x) = x. f(t) dt where f E Cn[a, b] gives 

1 (n) 
(4.12) Y[XO, Z2 ,Zn f 'i] (n + 1)! (i) 

where min (XO, Z1, , Zn+l) < x nmax (x,,, z1, ... , Zn+l). Thus (4.12) in 
conjunction with (4.4) implies the integration formula (3.2) is simplex. 

In applying Theorem 4.2, since the terms (4.3) and Cin rn-1(z1) must be com- 
puted anyway, the constant multiplying--y[xO, Z2 * * Zn X t, n] in (4.4) is just 
the sum of Ck7rni1(z1) and the terms in (4.3). This is seen to be true by (4.10). 

5. Examples of Closed Type Formulas. Consider as the first example Simpson's 
Rule 

ra2 h 
(5.1) f(t) dt -I {f(ao) + 4f(ai) +f(a2)}, 

ao 3 

where ai ao + ih for i = 0, 1, 2. Since it is easy to check that Simpson's Rule is 
of order four, we know that corresponding to the formula (3.2) Simpson's Rule 
can be written in the form 

rz4 4 

(5.2) f(t) dt 4 Ci4f(zi) + R4(f; Z1 , Z4), 
21 ~~~i=l 

where 
4 

(5.3) R4(f; zi, z4) = - C41r3'(zi)(zi - ZO)y[Z1 ZS , Zi] 
i=l 

Here we have taken z1 = xo ao a Z2 = z1 + h, z3 = Z1 + -3h7 Z4 - z1 + 2h, and 
Z -Z1 + Th. Note z3 < z5 < z4. By pairing up the C44's with Simpson's Rule we 
get 14 = 3h, c44 - hC3 =0 044 = h/3. 

Since z1 = xo, 

(5.4) 73(z) = (z - Z1) (Z - Z2) (Z - Z3) (Z - Z4) 

and we have 7r3'(z) -3h3, 7r3'(Z2) = 2h3, r3'(z3) = -wh3 and 7r3'(Z4) = h3. We 
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now see that Theorem 4.2 applies because 

(Z1 -Z2) ZC4'73'(Zi) = h5, 
i~l 

2 

(Z2 -Z3) 4 C74431(Zi) -= h5 
il1 

3 

(Z3 -Z4) Z C14i3'(Zi) = 1h5, 

Zr 
4 

(Z4 -Z) j Ci47r3'(Zi) = 0, 
i=l 

and C14r3(zi) = 0. Hence for Simpson's Rule 

(5.5) R4(f; Zo , Z4) = -Y[Z1, Z2, Z, Z4 , Z , 1 ]4h5, 

where z1 ? , , 7 ? z1 + 2h. If we use the fact that y[z1, Z2, Z3, Z4, Z , ] = 

(1/5!) f(4)(x) for z1 ? x < z1 + 2h we get 

(5.6) R3(f; ZO , Z4) =- f(4) 

Note that since i11 C47r3'(ZO) = 0 it does not matter what values z5 has, be- 
cause the only place z5 enters in is in the term, see (4.9), 

4 

Y[Z1, Z2, Z3, Z4, Z4 , Z5](Z4 - Z5) 4 C4131(Zi) 

and this term is zero. 
For the second example we consider the general four point closed quadrature 

formula 

(5.7) f(x) dx Cof(-1) + C1f(a) + C2f(f) + C3f(1), 

where -1 < a < 3 < 1. The coefficients Ci are given by 

(5.8) Ci = L 3(s) ds, 

where 

L3(S = (S- a) (S (S- 1) 
Lo (s ) = -2(1 + a)(1 +/3) 

L13(s) = (a + s)(a -)(a- 1)' 

(5.9) 
( )a M 

L2 3(s) = ( + 1)(S - a)(S -1) 

(W + 1)Q -Z a(fl 1)' 

L33(S) = (S + 1)(s- a)(S-) 
2(1 - a)(1-1) 
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Carrying out the integration in (5.8) gives 

2(1 + a)(1 + 3)[-(1+a+#)-2a/], 

(5.10) (a + 1)(a- )(a-l)[3 1 
02 + 1)( a)(3 1) [3a 1 

2(-3( _ ) (-1 + a + A)+ 2ca]. 2(1 - a)1 3)[(+ +3 2/] 

From Theorem 4.2 the sufficient condition for these formulas to be simplex of order 
four is that 

(a) [-2(1+ a + -2a/3], 

(5.11) (b) [-2(1 + a - )-2a#], 

(c) [-~~~23(1 -cat- -2a,] 

do not change sign. The fourth term is zero and need not be considered, as is also 
C073( -1) . 

By setting the terms in (5.11) equal to zero we can divide the triangle -1 < a, 
A < 1, a < / up as shown in Figure 5.1. Excluding the lines a = /, a = -1, and 
A = 1, the disjoint shaded region indicates where (a), (b), and (c) of (5.11) have 
the same sign. Thus any point (a, /3) in this shaded region corresponds with a 
simplex formula (5.7) of order four. The point (- 1//3, 1/\/3) corresponds with 
the Gauss-Legendre quadrature formula for two points, which is known to be 

(1,1) 

3a~~~~~~~~~~~~ 

(-1,\-1) 

FIGURE 5.1 
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simplex of order four. Similarly the points (a, 3) in the shaded region and on the 
lines a = 0 or 1s = 0 correspond with Simpson's Rule. 

In [5] Bragg and Leach have an example in Section 4 which indicates that on 
the line ,3 = 2a + 1 the formulas are simplex of order four. In Figure 5.1 this line 
is shown, and it is quite clear that the line enters the unshaded region. This indi- 
cates that the conditions defining the shaded region are really only sufficient 
conditions. 

Since the mth divided difference of a polynomial of degree m is a constant, if the 
sum EZ=j Cikxr'(zj) in (4.4) equals zero we know the formula under consideration 
has order greater than or equal to n + 1. If we solve for a and i3 so that for formula 
(5.7) 

0o7r4'(-1) + C174 (a) + C274 (1) + C374 (1) = 0 

we get the curve ,3 = - 1/5a. On this curve the formulas are of order five except 
at the point (- 1/V5,. 1/V/5), which is known (see [8]) to be simplex of order six.' 
All other points in the triangular region correspond to formulas of order four. 

6. An Example for an Open Type Formula. As an example for open type formulas 
consider 

(6.1) f f(t) dt 2 4 {llf(z1) +f(z2) +f(z3) + llf(Z4)}, 

where zi = xo + ih for i = 1, * * , 5. Hence for this example 7rnl(X) = 7r3(X) = 

(X - XO)(X - Z2)(X - z3)(x - Z4). Also 7rn(X) = 7r4(X) = (X - xO)(x - z2) 

(x - z3) (x - Z4) (X - z6). 
Thus we have 7r3'(zl) = 5h3, 7r3'(z2) = 4h3, 7r3'(z3) = -3h3, 7r3'(z4) = 8h3, and 

7r3(Zl) =-3!h4. Also for this example C14=4h, C24 h, C34 = Ah, and 44 
55Z 

t4h. 

Applying Theorem 4.2 we have 

( Z1 -Z2) Cl4r '(Z) =- h) (Vh4), 

(6.2) (Z2 -3[C'irg(z,) + 247r3'(Z2)] = (-h)(w5 + - -C )h4, 

(z3 - Z4)[C147r3(Z') + CZ41r'(z2) + CZ347r3'(Z3)] = (-h) (V5 + W- - 

and 

(Z4 - z)V147s3/'(Z) + *. + C447r3'(z4)] = (-h)(9 + X-5 + )h4 

These quantities are all seen to be negative and C14r3(zI) = -5h5 is also negative. 
Hence we have from Theorem 4.2 that 

(6-.3) R3(fx o, Z6) = Y[XO, z2, z3, Z4 X n1]{4V7 + 35 - 25 + V + A-51h' 

or 

(6.4) R3(f, Xo, x6) = h y[xo, Z2 X z3, Z4 i, 4 

I I am indebted to the referee for pointing out the existence of this curve. 
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Using now the fact that y[xO , Z2, z3, Z4, i, = f4 (x()/5! for xo < x ? z5 we have 

(6.5) R3(f, o, X5) = 1944h5f(4) (X) . 
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