
Some Fiffh Degree Integration Formulas for 
Symmetric Regions 

By A. H. Stroud 

1. Introduction. Here we discuss some approximate integration formulas of the 
form 

I' r N 

(l) J j f~f(xl x ** a) dxl ... dxn A E iAf(vii *** Pin).- 

Here Sn is a region in n-dimensional Euclidean space (n _ 2), the Ai are constants 
and the (vil, ***, vin) are points in the space. We discuss a general class of 5th 
degree formulas for a class of regions Sn which includes the n-dimensional cube and 
sphere; a precise description of the regions to which our discussion applies will be 
given in the next section. Each formula in the class contains no more than 
N = 2n(n + 1) points and has all positive coefficients Ai. For the n-sphere we 
give constants in four useful formulas which contain 2 n(n + 1), 2"n + 1, 2n+1 - 1 

and 2n + 2n points. The 2n(n + 1) point formula has all coefficients equal. The 
2n + 2n point formula has fewer points than any other known 5th degree formula 
in which all coefficients are positive (for the n-sphere, n > 4). The corresponding 
formulas for the n-cube are not as useful since, for most values of n, they have 
some points which lie outside the cube. 

Previously, Hammer and Stroud [3] have given formulas of 5th degree for the 
n-cube and n-sphere which use only 2n2 + 1 points. Those formulas, however, 
have the undesirable feature that, for the n-sphere (n > 5), some of the coefficients 
Ai are negative. The only other known general class of 5th degree formulas for the 
n-sphere, for arbitrary n, are the spherical product formulas; these contain 
3n - 3n-1 + 1 points and have all positive coefficients. (Spherical product formulas 
were first described, for n = 2, 3, by Peirce [6, 7], and for arbitrary n independently 
by Hetherington [4] and lMlysovskih [5]; an alternative description is given by 
Stroud and Secrest [8].) For the 3-sphere Ditkin [1] gives a 5th degree formula con- 
taining 13 points and positive coefficients. 

2. A General Class of Formulas. To construct a 5th degree formula let us take 
the following points and coefficients 

(2) (+vil, ?Vi2 , ?-Vin) AX, i = 1, ... , n + 1 

where the Vik and A, are parameters to be determined. Here we mean that all of 
the (at most 2n) points 

4- il v iVj2 * Vj, ) 

are taken with the same coefficient A j, j = 1, *, n + 1. If certain of the Vjk 

are zero then the number of points with coefficient Aj is less than 2'. 
The regions Sn, to which our discussion will apply can be described precisely in 
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terms of the monomial integrals 

I(xial = f *. Xnan) ..* fi al 
X2a2 * * 

an 
dxl ... dXn 

(where the ak are all nonnegative integers). We assume Sn has the property that 
for 0 < al + * + an < 5 the only nonzero monomial integrals are 

(3) I(1), I(x 2), I(xi2xj2) i,j= 1, n, 
and that 

I(x12) = . = I(xn) 

I(x14) = I =(Xn4)1 

I(X12x22) - = I(X2 2). 

Requiring that (1) be exact for the monomials (3) means that a certain system 
of (n + 1) (n + 2) /2 equations must be satisfied. This system can be written in 
the matrix form 

(4) XTAX = C 

where XT is the transpose of X, 

Vil Vi2 ... v 1n 
22 2 

X = V21 V22 
... 

V2n 

[2 22 22 i 
Vn+l,l Vn+i,2 . . . Vn+l,n 1i 

Al 0 .. 0 0 
A A2 0 O 

A 2 2n.., 
0 ... An 0 

L o ... 0 An+1j 

!C40 C22 . C22 C20] 

C22 C40 
. 

C22 C20 

C- 
C22 C22 

. 
C40 C20 

C20 C20 ... C20 Coo 

Car f.. fi * xij dl... dXn iy j 1,y .. n. 

(Here we have assumed all the vij $ 0. If, for a certain i, k of the vil, * , Vin are 
zero then the ith diagonal element of the matrix A must be 2n-kAi ) 

It is not difficult to see that matrix C is positive definite. Equation (4) states 
that matrices A and C are congruent. Thus if we can find parameters vij, Ai which 
satisfy (4) with the V'j all real then, by the law of inertia for quadratic forms 
(Gantmaher [2]), it must turn out that the Ai are all positive. 
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3. Formula I: 2'(n + 1) Points. For the points (2) let us choose the. following 

(iv, ix, ix, *`, ix, ix) 

(ix, iv, ix, . , ix, ix) :- : : A. X :L :) --X 4 

(i+, iX, ix, , i, iv) 

all with the same coefficient A. Then the system (4) reduces to 

2n(n + 1)A =coo 

V2 + (n - 1)X2 + 72 = 
(n + 1)c2o 

Coo 

(5) V4 + (n-1A)4 + 4 = (n + 1)c 
Coo 

2V2X2 + (n - 2)X4 + 74 
= (n + 1)c22 

Coo 

It is not too difficult to show that the solution of this system can bc written as 

2 C20 C4+ (n - 1)C22 - 2n C2O) 

coo Coo Coo Coo 

nx4 - (2Vn + 1)C20 _2lX2+ (n + 1)c2 4 

Coo Coo 

2 (n + 1)c2 2 )X2. v = _ - -7 (n-1 . 
COO 

For the n-sphere x? + x22 + + x,2 _ 1 

?r2 
1 ir 

2 

COO C20 +2coo, 
r (n+ i)' n+20= ~ 

3 _ 1 
C40 

=(n + 2)(n + 4)CO C22 (n + 2)(n + 4) COO 

and there are four solutions to (5). Choosing the negative sign in the expression 
for 72 and the smallest of the two corresponding solutions for X2 gives the solution 

2 (n + 4)-2V/(n + 4) 

(n+2)(n+4) 

2 n(n + 4) + 2V/(n + 4)- V(2(n + 1)(n + 2)(n + 4)) 
n(n + 2)(n + 4) 

2 n(n + 4) + 2V/(n + 4) + (n -1)V/(2(n + 1)(n + 2)(n + 4)) 
n(n + 2)(n + 4) 

for which all the points in the formula lie inside the n-sphere. In fact, the points 

(inq, -, i7n) lie on a sphere of radius 
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rl = i n + 2 
- 

(n + 2)V/(n + 4)) 
< 

and the remaining points lie on a sphere of radius 

r2 = (42T? T?)<1 
6 n + 2 (n + 2)-v(n + 4)) 

The other three possible solutions to (5) always give some points which lie 
outside the sphere for n > 2 (or are complex). 

For the n-cube, with vertices (?1, 1, * , ?41), the solution for which all 
points are inside the cube for the most values of n (2 ? n < 6) is: 

2 5 + 2-/5 
?7 15 

, 5n-2V/5- 2/(5(n + 1)) 
15n 

2 n- 2V/5 + 2(n - 1)V/(5(n + 1)) v = 15n 

4. Formula II: 2nn + 1 Points. For the points and coefficients (2) we choose 

(0, 0, 0, **.,, 0 ) Ao 
(?v, ?X, d=X, .., X, \X) Al 
(+X, ?tv, ?X, ..., ?X, ?X) A 

(?X, ?)X +X, *.-, ?X, ?v) Al 

System (4) becomes 
Ao + 2nnA, = coo, 

2nA&~v2 + (n - )X21= C20 

2-Al[v4 + (n - )X4] = C40, 

2'Al[2v2X2 + (n - 2)X41 = C22 

with solution 
2 2 

2A - C20 Ao= coo- nC2 

C40 + (n-1)c2C' C40 + (n -)C22 

2 C40 + (n - 1)C22 ? (n- ) 4({c40 - C22} {C40 + (n- 1)C22}) (6) v =-- 
nC20 

2 C40 + (n - )C22 +/(C40 - C22}{C40 + (n - 1)C22) 

flC20 
2c2 

For the n-sphere, choosing the positive sign in v2, gives the solution 

2nA1=( 4?44 
=(nf + )-4)2 

coo 
Ao (n + 2)2Co, 

V2 = n + 2 + (n-1)V/(2(n + 2)) X2 n+ 2_ -(2(n + 2)) 
n(n + 4) n(n + 4) 
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with all points inside the sphere for all n. In fact all points except the origin lie on a 
sphere of radius 

r = n + 2) 

For the n-cube the solution (6) which gives all points inside the cube for the 
most values of n (2 < n < 5) is 

2nAl = 5 
co Ao = coo 1 5n + 4 ?? ' 5n + 4 ' 

2 _ 5n + 4 + 2(n-1)V/(5n + 4) x2= 5n + 4-2V(5n + 4) 
v--15n 15n 

5. Formula III: 2 n+'- 1 Points. For the points and coefficients (2) we choose 

(+v1, ?X, +X, .. , x, -+X) Al 
(0, ?V2, XI ... I X tx) A2 

(0. ?, 0? 
.. I * 1 ? 4? vn ) A n 

(0, 0, 0 , . 0, 0) An+ 

Equations (4) are 

2nA1 + 2 '1A2 + ... + 2An + An+1 =COO 

[2nAl + + 2n-i+2A,_.]X2 + 2 ni+lA'iVi2= C20 

[2 A1 + . + 2n-i2A i_]X4 + 2 +'A = 040 

[2nA1 + * + 2n-i+2A i_]X4 + 2n-i+lA vi2X2 C 022 

Equations (7) have the unique solution 

X2 = C22 V2 =C40 + (i - 1)C22 
C20 C20 

n-i+1 C201C40 - C221 
[c4o + (i-2)222][C4o + (i-1)C221= 

2 2 

2nA, = C20 A.+, = co- nc20 
C40' c40 + (n -1)c2 

For the n-sphere we have 

n+4' 
=' 

+2 i=1,***n, 

2(n + 4) 2 Ai =f~l) + COO i ,n, 

2 2 

An+, = n+ 2 COO 
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and all points except the center lie on a sphere of radius 

r = t (+)2 

For the n-cube some points lie outside the cube for n > 3. 

6. Formula IV: 2' + 2n Points. For the points and coefficients (2) we choose 

(i??, ?, ..., +I , 0 ti) AL 

(?v,O, *... 0) A2 

System (4) is 

2nAj + 2nA2 = cOO, 

2nAiv2 + 2A272 = C20, 

(8) 2nA1v4 + 2A274 C40, 

2 A 1 = C22 

The values of V X2 satisfy 

(C20 - COOC22)V4 - 2c2o(c40 - C22)V2 + (C40 - C22)2 + nC22(C40 - C22) = 0, 

[nC2o - Coo(C40 - C22))f4 -2nC2Oc22q2 + nc22 + C22(C40 - C22) = 0, 

where corresponding to the largest value of v2 we must use the smallest value of 42 

and vice versa. 
For the n-sphere the solution 

2 n + 4-V/(2(n + 4)) 2 _ n(n + 4) + 2V/(2(n + 4)) 
V 

n+4 ' (n2+2n-4)(n+4) 

2nA1 n+2~ 4),4COO~ 2A2 2 4CO en + 2)(n + 4)724 2 (n + 2)(n + 4) 

gives all points inside the n-sphere for n ? 4. 
For the n-cube, n > 2, there is no solution for which all the points are inside. 

7. Concluding Remarks and Examples. For the n-sphere the above 2n?1 - 1 
point formula can be constructed in another way which is rather interesting. 

As mentioned above, the spherical product of n, 3-point one-dimensional formu- 
las contains 3' - 3n-1 + 1 points. A 5th degree spherical product formula can be 
constructed, however, using fewer points than this. Let us take, as in the usual 
spherical product, the 3-point one-dimensional Gauss formula for the radial com- 
ponent. For each of the n - 1 angular components let us take 5th degree, 4-point 
one-dimensional Lobatto formulas (which include the end points among the four 
points). By a somewhat tedious counting argument, which we will not carry out 
here, it can be shown that the resulting formula contains only 2?n+1 1 distinct 
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points and, in fact, coincides with the above Formula III. To our knowledge, how- 
ever, Formula III has never been constructed by this technique. The advantage 
of using Lobatto formulas in constructing spherical product formulas was first 
pointed out to us by R. A. Sack; to our knowledge he was the first to propose this. 
The number of points in spherical product formulas of degree 2m - 1, for general m, 
constructed from Lobatto formulas is given by Stroud and Secrest [8]. 

To illustrate the use of the formulas we have derived we numerically evaluate 
the integral 

in - ...* cos (xi + + xn) dxi . dnx. 
Sn 

where S. is the unit n-sphere (n ? 2). The exact value of this integral is given by 

in = COO k+ kk + ki k2 ... k ] 

where, as before, cOO is the volume of the n-sphere and 

42 
ka = 4 a2 + 2a, a = 1, 2, 

n 

The approximate values obtained from our four formulas, and also the formulas 
containing 2n2 + 1 and 3' - 3f-1 + 1 points, are given in Table 1 for n = 4, 8. 
The exact values, correct to 8 decimals, are 

2 

J4= 0.705668057 - = 3.48233228, 
2 

4 

J8= 0.660697220 - = 2.68157983. 
24 

It should be noted that in 4 dimensions certain coefficients in the 2njj + 1 point 
formula are zero so, in effect, that formula uses only -5 points. 

Hudson Laboratories 
Columbia University 
Dobbs Ferry, New York 10522 

TABLE 1. Approximate values of integrals 

Number of points J4J8 

2nx2 + 1 3.4854745 2.6958484 
2n + 2n 3.4767683 2.6759335 
2n+1 - 1 3.4823309 2.6807257 
2nn + 1 3.4827397 2.6815415 
2n(n + 1) 3.4824007 2.6812335 
3n - 3n-I + 1 3.4836193 2.6827835 
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