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1. Introduction. Sometimes one is interested in exact solutions of linear equations 
and cannot tolerate any errors at all, be it round-off errors, truncation errors or 
otherwise. In such situations division cannot be used. Eliminating variables by 
cross-multiplying leads to a tremendous growth in the size of intermediate results. 
This is well illustrated in an example of J. Barkley Rosser [5], in which a 6 X 6 
matrix is given whose elements are integers in the interval [- 192, 195]. Intermediate 
results of the order of 1029 are obtained after cross-multiplying. Therefore Rosser 
proposes to accomplish the elimination by means of a long sequence of additions 
and cross-multiplications by small numbers only. However, as can be seen from his 
example, numbers still grow rather fast, and for large matrices most of the computa- 
tion would still have to be done in multiple-precision. 

Luther and Guseman [3] developed an iterative method for obtaining the exact 
adjoint of a matrix. Multiple-precision computation is again required for most of 
the process. 

The method described in this paper consists of converting the given system of 
equations to a system of congruences modulo a number of primes. At the end of the 
kth step, the solution of the system of congruences mod Pk is combined with the 
previous solution by the Chinese Remainder Theorem. The process is continued until 
the solutions produced in the kth and (k + 1)st steps are identical. At this point a 
substitution check is made, and usually the process terminates there, although the 
check may reveal that more primes are required. 

All computations are performed in single-precision arithmetic, except for the 
following three computations: 

(i) combining the previous solution with the solution mod Pk; 
(ii) the substitution check; 
(iii) a final reduction step designed to produce a solution in lowest terms. 

All these three computations are rather short. 
A series of standard FORTRAN subroutines was written to implement the con- 

gruence method on the CDC 1604-A Computer (32K memory, 48 bit word). For 
example, it took 7 (60) minutes computing time to obtain the 6 (9) independent 
solutions of a system of 54 (111) homogeneous equations in 60 (120) unknowns of 
rank 54 (111) with integral coefficients in the range -1008,S56] ([-2180, 2568]). 
These times could have been about halved, had we available primes of the order of 
10'4, rather than only primes of the order of 107. The present program can handle 
matrices of order up to about 150 X 150. However, the method is by no means 
limited to this size. By using magnetic tape, and extending the precision of the 
multiple-precision part of the program, larger matrices can be handled. 

In fact, it appears that the gain of the congruence method over conventional 
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multiple-precision. methods is larger for large matrices. The computation time for 
working in t-precision is roughly proportional to t2. In the congruence method, where 
most of the work is single-precision, computation time is roughly proportional to t. 
But each single-precision operation in the congruence method is more time-consum- 
ing than in conventional methods, since in the congruence method one works with 
residues mod Pk which should always lie in a fixed interval (K, K + pi], and division 
by Pk is necessary to keep them there. 

Another property of the congruence method is that it preserves the maximal 
nonzero determinant of the original coefficient matrix. Using cross-multiplication 
elimination, this determinant is usually multiplied by a very large factor, which 
leads to very large intermediate results, and consequently higher precision is 
required. 

There are many other areas besides number theory in which exact solutions are 
desirable. For example, in group theoretical investigations in atomic and nuclear 
spectroscopy, where one often encounters symmetric matrices whose elements and 
eigenvalues are of the form aN/b/c, a, b, c integers [1], [4]. It is required to find the 
eigenvectors, whose elements are of the same form. Sometimes it is much more en- 
lightening to examine the exact form of the elements than to observe numerical 
results only [1]. By treating the square roots as parameters, this can be done by the 
congruence method. 

The congruence method is not confined to solving linear diophantine equations. 
It can be used, e.g., for evaluating rational functions with rational coefficients 
exactly. The need for this arises again in atomic spectroscopy [6], and of course in 
numerical investigations in number theory. Since all numbers represented in a 
computer are rational, it appears feasible to use the method in some situations where 
high-precision is required for intermediate results, although no exact final solution 
is required. However, in the present paper we confine attention to the exact solution 
of linear equations only. 

2. The Congruence Method. By multiplying through by a suitable integer, we 
nay assume that the rational system of equations is integral. We may further as- 
sume without loss of generality that the system is homogeneous. Because consider 
the nonhomogeneous system AX = Y, where A is of order n X (n - 1), and X, Y 
are column vectors of orders n - 1 and m respectively. Replacing A by the aug- 
;nented matrix B and XT = (xi , -** , x,,,) by ZT = (z1, * ', z,), leads to the 
homogeneous system BZ 0. Considering this as a linear dependence relation on 
the columns of B, we see that if this system has no solution with zn id 0, the non- 
homogeneous system is not solvable. Otherwise, a particular solution of AX = Y 
is given by (-Z1/zn z', ' -Zn-l/zn), to which can be added any solution of BZ = 0 
for which z- = 0. Therefore we shall henceforth only deal with the problem of ob- 
taining an integral solution to an integral homogeneous system AX = 0, where A is 
of order mn X n and rank r, with no ? n. It has a nontrivial solution and hence a non- 
trivial integral solution if and only if r < n. 

I Dr. Morris Newman informed us that he has a machine program which transforms an 

integral matrix to Hermite Normal Form. These transformations also preserve the size of all 

subdeterminants. 
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Definitions. 
(i) AminorM = M(ii, it,; ji, ,jt) of order tof a matrix C is the 

determinant of the submatrix composed of rows il. , it and columns ja, j, , 

of C. 
(ii) If G = (gi, , gn), H = (hi , hn) are two vectors satisfying 

gj-=hi (mod p) for all 1 ? j < n, we write G H (mod p). 
(iii) Let { F (k)} be a sequence of vectors and G a fixed vector. We say that 

IF(k) } converges to G if F(k) = G for all sufficiently large k. 
Let pi, Pk be distinct primes, and suppose that W), , f(k) are vectors 

satisfying 

G _H(') (modp P) s = 1, ,ki 

where G is a fixed vector. By the Chinese Remainder Theorem, there exists a unique 
vector F(k) = ( f(k) n. . . f,(k)) satisfying 

(1) F ~k) I-I") (mod ps), s = 1, , k 

and 

(2) [-P1 ... Pk/2] < fj() < [pi ... Pk/2], j = 1, v n. 

For all sufficiently large k we clearly have also 

[P 
... '*'pk/2] < 9gj < [P pl***Pk/2] X,=1X n . 

Hence F(k) converges to G. We state this formally in the following form: 
THEOREM I. Suppose that 

(3) G Hs (modP), s = 1, k 

where G is a fixed vector Let F(k) be the unique vector satisfying (1) and (2). Then 
IF 

M } converges to G. 
We shall apply this result to the case where the H(s) are solutions of 

AX 0 0 (mod ps), and G is an unknown but fixed solution of AX = 0. A way to 
find such vectors H(') is suggested by the following simple fact: 

THEOREM II. Let G be a solution of AX = 0, where A = (aij) is an integral 
m X n matrix of rank r. Let H be a solution of AX - 0 (mod p), p prime and 
M = M(il, ir;jl, ,j j) a minor of A not divisible by p. If gj = h, (mod p) 
for j 5 * ji, ir. ,then G H (modp). 

Proof. G and H and hence G - H are solutions of 

Zaijxj O(modp), i= il, ,ir. 

Since gj -hi O(modp) for j $ j, . - X jrgj, - hil = 1, --, r) isalso a 
solution of 

? ai,,jxj,=- 0 (mod p), k 1, r. 
lc1 

But the coefficient matrix of this system is nonsingular. Hence it has only the trivial 
solution, and G H(mod p) as asserted. 
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The system of equations considered in Theorem II has an integral solution space 
of n - r dimensions. A particular solution, to be denoted by G, is determined by 
putting gj,+, = M, gj,+ = 0 for 1 < i < n - r. In order to find solutions H(s) of 
AX 0_ (mod p8) all of which satisfy (3) for the same G, it suffices therefore to do 
the following: 

(I) put hi,+, M (mod p8); 
(II) put hj,+3 0 (modp8), 1 < i < n - r, Ps T4 M. 
The system AX 3 0 (mod p8) is solved by a triangularizing process T, which 

transforms A into a triangular matrix Bp, . If the rank of A (mod p8) is Ps , the minor 
consisting of the first p. rows and columns of Bp,, will be denoted by 

MP" -Mp,(ii(8)1-. . iP(8,); j(8)2 ...,2 jP(is) ) (8) 4 AI) = ( 1 I1.t*s a 

where i1 , * , X i;j ** j(8) are the p8 rows and columns of A appearing as the 
first p. rows and columns of BP, . (Here and in the following we use the phrase 
"rows and columns of A" in a slightly extended sense: a row (column) of A to which 
is added any linear combination of other rows (columns), is still considered the same 
row (column) of A.) Since Bp,, contains diagonal elements $ 0 (mod ps) in its first 
p, rows and columns and since p. is prime, Mp, 4 0 (mod p8). 

The triangularizing process T = Tp,, consists of performing elementary row and 
column operations on A (mod p.), which leave all minors of A invariant (mod p.). 
In searching for an element 4 0 (mod ps), rows are first scanned sequentially, and 
only then columns. More precisely, suppose that by performing elementary row and 
column operations we already obtained a matrix C = (cij) such that cii 0 0 (mod p8 ) 
for 1i <i< k and c1j 0 (mod pk) for j < i < m,1< j < k. Then the element in 
the kth row and kth column of C is the unique element Clf $ 0 (mod p8) of C, such 
that cj = 0 (mod p8) for k <,j < r, k < i < m and ci, 0 (mod p8) for k < i < o. 

As usual, all elements $ 0 (mod p8) of Bp,, and of all partially triangularized 
matrices leading to BP, are congruent to the product of a minor of A by the inverse 
of another (mod Ps). 

Since neither r nor any minor M of A of order r is known & priori, the remaining 
problem is to choose primes p. so that: 

(i) the same rank p8 (mod p.) of A is obtained for all s; 
(ii) Bp,, shall contain the same rows and columns of A for all s; 
(iii) Ps shall be identical with the rank r of A. 
Suppose that (i) and (ii) were already solved for all primes pi, * **, pk-l. De- 

note by p the common rank of the B Pi, and let 

V = (i1, - - , ip ;jl,- , jp) = (V1, V2p), 

where i,. *, i; jy, * , jp are the rows and columns of A appearing as the first p 
rows and columns of B, i = 1, * * , k -1. Let 

V~l (ili 
... ip" ) jl( ), ... *,jpf (V1() *** 

v~p) 

be another 2p-tuple, and introduce a lexicographic ordering in the set of all 2p- 
tuples as follows: V(') > V if and only if vi") > vi for the smallest integer i for which 
Vi(l) ? Vi . For selecting a prime Pk, we consider the following three cases: 

1. pk < p. In this case Pk is replaced by another prime. This procedure is re- 
peated until a prime pk is found for which Pk _ p. It is clear that such a prime exists 
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2. Pk > p. In this case we drop the result obtained by the primes pi, P * ** ek-1 

and put p = Pk , V = V(k). 

3. Pk = p. Here we have three subcases: 
(i) VOk) > V. From the definition of the process T, it is clear that this happens 

only if Pk divides one of the minors of A, and hence there is only a finite number of 
such primes. By repeatedly replacing Pk, we will eventually find a prime Pk for 
which Vk) ? V. 

(ii) VOk) < V. In this case we drop pi * *, Pk-1 and put V = VSk). This situ- 
ation can happen only for a finite number of primes, since the set of all V contains 
a lexicographically minimal element. 

(iii) Vie) = V. Then a solution H(k) is selected according to (I) and (II) above. 
This solution is combined with the previous one, whereby a vector F(k) satisfying 
(1) and (2) is produced. 

By construction, 

M (ik() *inks; jl(k)2 *... ik)- p(l, ,p 

_ M (ii, , i4 ;ji, *, jp) (mod pk), 

where ii, 2 ip ;jl 2, ... jp are the same for all k. Hence by (I), (II) and Theorem 
II, congruence (3) is satisfied, and F(k) converges to G by Theorem I. 

Using a sufficiently large number of primes guarantees that p = r by Hadamard's 
inequality. In practice we work with large primes, because then the probability 
that a prime divides a minor of A is very small, and practically every prime leads to 
subcase (iii) of case 3. Thus convergence is fast and the probability that p < r for a 
number of successive primes is extremely small. Even if this should happen, it 
would be detected by the substitution check, and more primes would then be 
selected until p = r. 

3. The Computer Program. Primes of the order of 107 which are just less than 
half a computer word are used for the computer program. They were taken from 
among the last entries of Lehmer's table [2]. Using primes of the order of a whole 
computer word would usually lead to less iteration steps, but such large primes were 
not readily available. 

A master routine and seven subroutines were written in FORTRAN 63 for the 
CDC 1604-A computer. The master program entitled SOLVE reads in the matrix A 
from magnetic tape. The size of A is limited to about 150 X 150. The master program 
also contains the substitution check which is written in 8-precision. This means that 
the absolute value of all minors of A is limited to 2383. Also the last three subrou- 
tines below are written in 8-precision. The last two of these carry out the final re- 
duction step. The first four subroutines below are written in single-precision. 

1. TRIANGLE. Carries out the triangularizing process and computes the 
principal minor (mod p). It also registers the order of the rows and columns of A 
in the triangularized matrix Bp . 

2. SOLUTION. Generates the solution space (mod p) of dimension n- p- 

from Bp. 
3. MODULO. Finds the residue of a number in the range [-p/2] < a ? [p/2] 

by means of a division by p. This is carried out after each multiplication. 
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4. INVERSE. Computes the inverse of a (mod p), p prime. For any a X 0 
satisfying [-p/2] < a < [p/2], we have (a, p) = 1. Hence ka + ip = 1 and 
t a-' (mod p). The integer k is computed by means of the Euclidean Algorithm. 

5. CHIN. Computes the solution x = a of 

(4) x-A(modP) 

(5) x-B (mod Q) 

lying in the range [-PQ/2] < a < [PQ/2], where A, P are single-precision numbers, 
B, Q multiple-precision numbers, P prime, (P, Q) = 1. From (4), a = A + KP. 
Hence from (5), K (B - A) P-' (mod Q). 

6. GCD. Computes the greatest common divisor of two multiple precision 
numbers by the Euclidean Algorithm. 

7. SIMPLIFY. Divides the n components of a multiple-precision vector by their 
g.cd., computed by means of the GCD subroutine. 
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