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Then 

ui=[4J, U2[ 4j, and U3 [6] 

L5 1 L7 1 [4] 

Thus 

X 1 0[ 3~ B = [0 1 02 + 04 [1 0 0] + 04 [0 1 0] + [6 [? ? 1]. 

Co= I,)Co = I. 

1 0 0 O 1 

Cl-l = I - (1U)(V1TI)/(l + V1TIU1) = I 4 - -2 1 

071 = 071 - ([_ 0 0 [) 1 

([ 1 4 1 0) -2 1)? 
C2-1 Cl-1 _ -7a 0 1 L7 -_O 

+ [? ?] ( -2 ? o0 4 2 

C30 = C2 - (C2 U3) ( V3 TC2)/(1 + V3 TC2 U3) = B. 
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Certain Expansions of the Basic 
Hypergeometric Functions 

By Arun Verma 

1. Introduction. In a recent paper Jerry L. Fields and Jet Wimp [7] have used a 
very elegant method by induction through Laplace transform to derive a number 
of expansions of hypergeometric functions. In this paper, I have used certain basic 
integrals and the method of induction to derive certain expansions of basic hyper- 
geometric functions of a very general character. The following usual notation has 
been used throughout the paper. Let 

[a. [q] = (1 - qa)(1 - qa+l) .. - qa+n-1) [a]0 = 1 

and 

(a + x) = ( a + Xq q(1x)OO = IT (1- '). 
k= (a + Xq k+X) n0 
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Also, let 

F I(a)l X] l [(a,)],,x' qI < landIxI < 1, 

and 

Bq(a7 f3) = So' t"'(1 - qt)-,1 d(q, t), 

where 

1 Oq _ sox f (y) d (q, y) = x qf (q x), 

and (a,) means r parameters of the type a1, a2, , a7. 
The basic analogue of the Laplace transform [4, 5] is defined as 

g(s) = qLs f(x) =1 - SO1 Eq(qsx)f(x) d(q, x) 
(1.1) 

-(1 - q) f qif(Sqi)/( -q) . 
S ijO 

The inverse is defined by the complex integral 

(1.2) f(x) = 2I i (s)eq(sx) ds, 

where the path of integration C encircles the origin, and can also be deformed into a 
loop, parallel to the imaginary axis. Also 

E (x) _ (-X) r(r-1)/2r 
Eq (X) = __ __ _ 

eq(X) = [ <1. 

2. We now proceed to derive the following expansion 

[(a.,), (Cr); xW] [ F(a,,)]Jn[aln (X 
nn (n-1) /2 

pr)l+m L (b1), (dm) ] n-O [lln[(bl)]n['y + n]. 
n + ae, n + 0, n + (aX,); x -n, n + Y, (c,); wq X p+2?41+1 2n + a + 1, n + (bi) X r+24?+2 aXX (dm)+ 

To prove this result, we first prove that 

A? B; xwlq- = 
O 

[a]m[b]M q m(m-1) /2_ X)... 

(2.2) C= m=O [l]m[' + In - 1]m 

B a + m, b + Fn; x A, B y a b m X Al . ~4' ,ByCn-,- 
~y+ 2m i LC,a, b 

Proof of (2.2). The right-hand side of (2.2) equals to 
fG mXmenq(m-1)l2[alm+n[blm+n [A) B, 'y + m - 1, -m; W 

m=O n=O [llm[l]n[y + ?n - lnm[,y + 2m]n C, a, b wl 
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Setting m + n = r, and changing the order of summation, we get 

l ajr[blr r [rim mr FA ,y+-nmw (2.3) E [1] i -r q 44 K B 7 + a -1-r ; ] 
r=O [11r in=O ~~~~~C, a, b 

The inner series equals to 

r [-rim qmr [AljBit[hy + ma - 11j-mit wt 
MIO [1]m[7y + m - 1]m[[y + 2mir-m to0 [1]t[C]t[ait[b]t 

X, [A]8[B]ihY - 1]. WE [- r]m[y - 1 + 8]m.[_M]8[27 + j]m[2oY + 2jmq 

8s0 [1],[C]s[a]s[b]8[y]r M=8 [llm[y + r]m[Iy' - -]m[ly 12]* 

where [a,,* = (1 + qa)(, + qa+1)(1 + qa+2) (1 + qa+m-1) 

Now setting m = s + 1, we get 

1 j [A]A[BiA-11j-r]8R7y + 218[27 + 2 8* [y -1 + 
S]8,(-w)t 

[7Y]r 8=0 [1][C]8[a]8[b]8[-y + r].[.y - 2]8R[X-- 1i 

rs-8 8+1 / 7- 1 + 2s, Rv+ 1 + si)[,yR + 1 + si"', - r + s; q r8 

X q 4)3[ R 2y7+ ]2 7 +2 *7r2 
[ [1- - 

1Y + 5] , [ 2y 
- 1 

+ s]* y + r + s ] 
But by a particular case of the sum of the well-poised 64?5 it can be easily seen 

that the above A3 vanishes except for r = s, when it reduces to unity. Hence the 
above expression, after a little simplification becomes 

[A1IJBIr q W 

[Cir[air[bir 

Substituting this value of the inner series in (2.3), we get the result. For w = q 
this result reduces to a result due to Agarwal [3; 3.2]. Further letting A, B, C tend 
to infinity, we get the basic analogue of a result due to Luke and Coleman 
[9; 1.8]. 

Now we proceed to prove (2.1) by induction. Suppose (2.1) holds for some values 
of p, r, 1 and m. Multiplying both sides by x'-', and taking the q-analogue of Laplace 
transform (1.1) on both the sides and making use of the result [5; 9.2]: 

1 SO8' E,(qsx)x d(q, x) = 8-k _ _7k [RI( k) > 0]. 

We get that 

- 
(a,), (Cr), a; WIS1 E(av) ]n[a!]n~L3n[a1. 8a) [(L (bl) (di) n=O [l]n[y + n]n[(bl)]n 

n(n-1)/2 [n, [- + y, (Cr); wq] X q r+2tm+2 L 
a, j3,(dn) 

,++ in + at, n + ,B, n + (a.), n + a; 11s] 

for Rl(a-) > 0. Thus replacing s by (1/x) the induction with respect to 'p' is seen 
to be true. To effect the induction with respect to '1' replace x by (1/.x) in (2.1) and 
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then multiplying both sides by x-' and taking the inverse of the q-analogue of the 
Laplace transform (1.2), we get 

( ap ), ( cr); Ws1 
_ 

[ ( ap )]n[at~n[Ojn( (-,) 
nn(n-l )/2 

p~r lmln[)b(dm),jl)n[Y + n]n[OfIn 

[-n, n + y, (C); wql [ n + a, n + , n + (ap); s 
X r+2'1)m+2 

. 
I4+ 

X+m L a)30, (dm) J -+24'+2 [2n + y + 1, n + (b, n + aJ - 

Similarly, the induction with respect to r, m can be effected. But for p = 1 = 0, 
r = 2, m = 1 and c1 = A, c2 = B, di = C and w = w/q in (2.1) we obtain (2.2), 

and hence the proof by induction of (2.1) is complete. The conditions on the param- 
eters can be waved off by analytic continuation. 

(2.1) is the q-analogue of a result due to Fields and Wimp [7; 1.3]. If we let a 
and / tend to infinity and take r = 0, m = 1, we get the basic analogue of a result 
due to Toscano [8; 1]. 

3. In this section, I proceed to derive, with the help of (2.1), another expansion 
of a more general character. Putting w = 0, replacing p by (p - 2) and setting 
a = a_1, ,= ap in (2.1), we get 

E [ (ap)]n( x) A r n + (ap); x 
n=O [l]n[(bl)]4n[+]n 1 L2n + -y + 1, n + (bl)J 

Replacing (ap), (bl), y by (ap) + k, (bl) + k and y + 2k respectively and multiply- 
ing both sides by [(CT)]k(WX)k/[1]k[(dm)]k , then setting n + k = t, we get 

[(c)]_(WX)_ _ [(b-)]k[(Cr)]k (W) 
k 

[(aap)]t-t]k[-y + tLk 

[l]kf(dm)]k [1]k[(ap)]k[(dm)]k t=k [l]t[(bi)]t[,y + t]t 

X ( _x) tqt(t-l)/2 A+[2t +-yl (bp); +j X ( x) Pb1+l2t + y + 1, (bl) +t] 

Summing both sides from k = 0 to co, and changing the order of summation on the 
right-hand side, we have 

r (C); WX 
_ [ ( ap)] - -_ 

X) tql(t-1)12 

(dmn) t=O [llt[(bilt][,y + t~t 

t + (ap);y x (b1+r+241p+m r(b1), (Cr)) -Y + t, -t; qwl X Pb1+ 2t + ^/ + 1I t + (bl)L (ap), (dm) 

Then using a technique similar to one used in the deduction of (2.1), we get the 
general expansion 

-(Cr), (et); wx- 
00 

[ (ap) n(et)] x_)nqn(n-l)/2 

r+t4m+u L (di), (fu) J n=O [1]n[(b1)]n[(fu)]4[Y + n]n 

(3.1) X F [ (a) + n, (et) + n;x 
L(b1) + n, (fj) + n, 2n + + iJ 
+ (bz) (Cr), 'Y + n, -n; qw 

* +r+2(bp+m (ap), (dm) j 

(3.1) is the q-analogue of a result due to Fields and Wimp [7; 2.4]. For p = 2,1 = 0 
and a, = a, a2 = / it yields (2.1). 
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4. In this section, I proceed to deduce a generalisation of the q-analogue of 
Euler's transformation for a2 4 viz., 

(4.1) 41 [a b; = (1- xqa+bc) _b 41 [c - a, c - b; xqa ] 

- C ~~~~~~~~~~~C 

The result to be proved is: 

(4.2) ( ; = ( 1 - zqSP+1P ) 

II1 EA,0 z n 2('1 
- 

Sp+1 + 'p- , p - aP+1; zqsp+P] 
r=l n r=? Pp + 'Yp-1 

where 
p-1 

[(Tr - Sr + 'Vr-linr[Pr 
- ar+iIn, H [a0t+2 + 'Y,.n njqr(Sr+1-r ) 

A = p 
- 

[iIn, 
II [Pt + Yr-bnr 
t=r 

and 

Sr = al + a2 + +tar, r = P1 + P2 + + Pr 'Vr= nl + n2f+ * +fnr 

r = 1,2, 3, ;'yo= landIz| < i,|q|< 1. 

For p = 1, this gives (4.1). To prove the formula (4.2), we multiply both sides by 
tap+21 (1 - qt)pp+1-ap+2-ireplace z by zt and take the basic integral from 0 to 1. 
Then integrating both sides by making use of a result of Jackson [6], we get 

Bq(ap+2; Pp+1 aip+2) 4 [() +2 ] = II Z AnrZ 
(PP+1) r=1 n,.-O 

[ Tp Sp + 'Yp-linp[Pp - 01p+11n Znpqnp(Sp+j-a 

n P0 o[l1np[pp + 7V-l1np 

x so tp 
-p+2 1(l - qt)Pp+1-ap+2-(1 - ztq P+lP)ap-s+j d(q, t) 

(4.3) P-l 00 00 %+~~~]4~-a+In 

= ]I i An Znr [ap-Sp + ep-1jnp[Pp -?01plnp 
r=i nr=? np=O [i]np[pp + p-l]np 

X Bq[^yp + ap+2; Pp+l - ap+2)znpqnp(Sp+c-op) 

X 241 [Sp+j -p, 'Vp + 
a1p+2; Z] 

pp+l + ^1p 

Then applying (4.1) on the right-hand side of (4.3), and dividing throughout by 
Bq[ap+2 i Pp+i l-p+2], we get the formula (4.1) with (p + 1) in place of p, which 
completes the induction proof. This is the basic analogue of a result due to Mac- 
Robert [2; 29, p. 363]. 

5. In this section, I deduce the basic generalisation of Saalschtitz's theorem. To 
do so, multiply both sides of (4.1) by (1 - z)s,+i - ap and equating the coefficient 
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of z' oI1 both the sides and simplifyinig, we get the required result in thle form: 

4) (a, +,-n; q U p [- Sp+n[]p - -ap+l], 
(pp), 1 - up + Sp+1 n [ fPp']n[U7p - )Sp+lln 
p-1 n-r-1 [Ur -Sr + 'Yr-i]n,[Pr - ar+l]n7LYr-1 - n], 

(5.1 ) r-1 n,=o [1])n[jp - Sp + 'yr-l]n,[l - pp + ap+1 + 'Yr-1 - ljnr 
p+1 
TI [at + 'Yr-i]n, 

-2 p_ n,(8,+1-0ar)+ I p _-I (p - l-Sp+l) 

X 
1 

H [Pt + 'Yr1]n 
t=r 

This reduces to the basic analogue of the Saalschiitz theorem [1; 8.4(1)] for 
p = 1. Moreover (5.1) is also the basic analogue of a result due to MacRobert 
[2; 30, P. 365]. 

In particular, taking p = 3 and al = a, a2 = b, a3 = C, a4 = d; p= e, P2 = 

p3 = 9 in (5.1) we get the basic analogue of another result due to MacRobert [2: 
p. 366], viz., 

54ir a, b, c, d,-_n; q 
6 efg,1 + a+ b + c+ d - e -f- g -n 

[e +f + J- a-b-c]lj~g -dl 

(5.2) [e +f + 9-a-b-c-d]4qg]. 
x [e - ah[e - bp[i-n]p[c]p[d]pqP(f-c+l) 
p=o []p[e +f + g- a-b- c]p[l + d- g -n]p[e][f] 

F e+f-a-b +p,f-c,p-n,p + d;q 
x 43 Le+f+g - a-b- c+p,1 - + d + p - n,f + p 

Further, putting g = c and writing c for d and f for g in (5.2), we have 

3 [ a, b, c,-n; q 1 [e + f -a- btf -Cn 
(5 3 Le,fl + a + b +c - e -f-nj = [e + f- a-b-cn[fln 

[e + f-a-b, e, 1 + c -fq-n 

which is a basic analogue of a result due to Whipple [10]. Further applying (5.3) 
to the right-hand side of (5.3) we get the basic analogue of still another result due to 
Whipple [10]. 

My thanks are due to Dr. R. P. Agarwal for his help during the preparation of 
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Boundedness of Difference Kernels 
of Bessel and Fourier Series 

By Shih-Hsiung Tung 

1. Introduction. Let am , m = 1, 2, * , be positive zeros of Bessel functions 
J,(x) of the first kind of order v _ -2, arranged in increasing order. The kernels 
of Bessel and Fourier cosine series on [0, 1] are denoted as 

M 
(1) BM(x; t) = E 2tJv(aimx)Jv( amt) J+2(a.m) 

m-1 

and 
M 

(2) CM CM(X; t) = 1 + E 2 cos (mirx) cos (mwrt). 
m-1 

We define the difference kernel to be 

(3) DM(x; t) = BM(x; t) - CM(x; t). 

Two series S = E si and T = E ti are said to be equiconvergent if 
.limno (S, - Tn) = 0, where Sn and Tn are partial sums of the first' n terms of 
the series. 

Here we study the boundedness (Theorems 1 and 2) of the difference kernel 
and the equiconvergence (Theorem 3) of Bessel series of a Lebesgue integrable 
function on [0, 1] and its corresponding Fourier cosine series. The proof of the 
boundedness of the difference kernel of two series is mainly based on the applica- 
tion of the asymptotic expansion of Bessel functions and their zeros. The equi- 
convergence theorem, which is a direct application of Theorem 2, is a stronger 
result obtained by a simple and straightforward proof comparable to the analogous 
ones given in [6] and [8]. We notice that the cosine series may equally well be re- 
placed by a sine or sine and cosine series. 

2. Preliminaries. The following results are needed later. 
LEMMA 1. If a is real, b > 0 and 0 < ? y< - k ? 1 - ?I < 1 for some integer 
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