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Certain Expansions of the Basic
Hypergeometric Functions

By Arun Verma

1. Introduction. In a recent paper Jerry L. Fields and Jet Wimp [7] have used a
very elegant method by induction through Laplace transform to derive a number
of expansions of hypergeometric functions. In this paper, I have used certain basic
integrals and the method of induction to derive certain expansions of basic hyper-
geometric functions of a very general character. The following usual notation has
been used throughout the paper. Let

el = [g = (1 — ¢)(1 = ¢ -+ (L= ¢, [ah =1,

and

© k ©
(a+2h =]] (—a-iﬂ—>, (1 — ) = I__IO (1 — zg").

=¢ \a + wq"‘”
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Also, let
(ar); x:l =~ [(a)], 2"
rd>s = ™M1 1/ N1 1 ’
[ (b) |~ Zopipn: ol < tendizl <
and
Bq(a, B) = Sol ta_l(]- - qt)ﬂ‘l d(07 t))
where
1 r - D 7
= S IW Ay = v 2 q(q9),
and (a,) means r parameters of the type a;, az, - , a,.

The basic analogue of the Laplace transform [4, 5] is defined as

g(s) = L, f(z) = o Eogsx)f(x) d(g, )

(L1) w
U295 )/~ o).

The inverse is defined by the complex integral
1

(1.2) fz) = 57 / g(s)e,(sx) ds,
™ J¢

where the path of integration C encircles the origin, and can also be deformed into a
loop, parallel to the imaginary axis. Also

i ( x)r (r—1)/2r
Ey(z) = ;, —ar
eq(@)—r;’f] lz] < 1.

2. We now proceed to derive the following expansion

(a), (e); 2w = [(ap)laledalBla( —2)"g 0"
p+r<I>z+m[ (b1), (dm) ] N ,.Z=0 G + 7k

n+a,n+ 8,0+ (a,);2 —n,n+v,(cr);wq]
X p+2¢l+1[ om + v + l,n + (I;’l) } X r+2¢m+2[ a, 6, (dm) .

To prove this result, we first prove that

A, By aw/q] _ <= lalublm ¢ (—2)"
2‘1"[ c ] =2 My + m — 1.

a+mb+mz| A,B,vy+m —1, — m;w
qu)l[ v+ 2m :I @3[ C,a,b ]

Proof of (2.2). The right-hand side of (2.2) equals to

i o< ( )m m+nqm(m—1)/2[a m+n[b]1n+" S |:A, B, Y + m — 1, — m, ’W]
= S MTallaly + m — Laly + 2m),  *° C,a,b |

(2.1)

(2.2)
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Setting m + n = r, and changing the order of summation, we get

23) Sl s e |:A, By +m—1,—m w]

r=0 [I]r m=0 C’ a, b
The inner series equals to
i [=rln ¢™ & [ALBLly + m — 1)[—m]. w'
mn=0 [1aly + m — 1aly + 2m],_m =0 [11[Cal[b]e ’
_ > ALBLly — 1l w' s~ [=rlaly — 1+ slal—mllby + $laldy + g™
=0 [1][Clsals[bls[v]. == (Laly + rlmlzy — 3mlzy — 3lm* ’

where [ala" = (1 + ¢*)(1 + ¢"") (1 + ¢™) - (1 + ¢"™7).
Now setting m = s + [, we get
1 <~ [ALBLI= 1=y + 3By + 37Ty — 1 + sh(—w)"
(v =0 (1L[CLla)blly + rl3y — 3Ll3v — 31.*

R g [7 —l4 2By +it+ By it —r+ s q"’]
o By -3+ By -3+ v+r+s '

But by a particular case of the sum of the well-poised ¢®;5 it can be easily seen
that the above 4®; vanishes except for r = s, when it reduces to unity. Hence the
above expression, after a little simplification becomes

(41(Bl, ¢ W
(C[a).[b]

Substituting this value of the inner series in (2.3), we get the result. Forw = ¢
this result reduces to a result due to Agarwal [3; 3.2]. Further letting A, B, C' tend
to infinity, we get the basic analogue of a result due to Luke and Coleman
[9; 1.8].

Now we proceed to prove (2.1) by induction. Suppose (2.1) holds for some values
of p, r, l and m. Multiplying both sides by ", and taking the g-analogue of Laplace
transform (1.1) on both the sides and making use of the result [5; 9.2]:

J+1

1 o1 k1 _avrf(l -y
o E,(qsz)x" d(q,x) = s ]I=Io (m) ,  [RI(k) > 0]

1 —

We get that

(ap), (Cr)y o, ’LD/S _ - [(ap)]n[a]n[ﬂ]n[o']n( —3)—"
*’*’““”*’"[ (B), (dm) ] =2 Mhly + nlal(02)]n

n(n—1)/2 -n,n + Y5 (Cr); wq]
P,
X q r+oPm+2 [ a, 8, (dn)

b n+a,n+ 8,0+ (a,),n+ o;1/s
prein 2n+ v+ 1,n + (b) '

for Rl1(¢) > 0. Thus replacing s by (1/x) the induction with respect to ‘p’ is seen
to be true. To effect the induction with respect to ‘I’ replace x by (1/x) in (2.1) and
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then multiplying both sides by z7° and taking the inverse of the g-analogue of the
Laplace transform (1.2), we get

(@), (c); w8 _ 5~ [(@p)laladulBla( = 8)"g"" "
o Prtmi1 [ (b2), (dm), U:I B nz-=0 1[Gy + nlalola

S S e RO | n+a,n+ B,n+ (a,);s
e @, B, (dn) mEE  on + v+ Ln+ (B),n + o).

Similarly, the induction with respect to 7, m can be effected. But forp = 1 = 0,
r=2m=1and¢ = 4,¢c; = B,di = C and w = w/q in (2.1) we obtain (2.2),
and hence the proof by induction of (2.1) is complete. The conditions on the param-
eters can be waved off by analytic continuation.

(2.1) is the g-analogue of a result due to Fields and Wimp [7; 1.3]. If we let «
and 8 tend to infinity and take » = 0, m = 1, we get the basic analogue of a result
due to Toscano [8; 1].

3. In this section, I proceed to derive, with the help of (2.1), another expansion
of a more general character. Putting w = 0, replacing p by (p — 2) and setting
@ = ap1,8 = a,in (2.1), we get

% [(ap)]a(=2)"g" """ n+ (a,); ]
1= ,,E=o LGyl 22 [2n +v+1,n+ (&) ]

Replacing (a,), (b:), v by (a,) + k, (b;) + k and v + 2k respectively and multiply-
ing both sides by [(¢,)]e(wz)*/[1:[(dn)]k , then setting n + k = ¢, we get

[(e](w)" _ [Bo)Ll(e)]elqw)® $~ [(ap)ld—thely + 4
(1] (dm)]e (l(ap)kl(dm)ls = [11d(BD)lly + ¢l
t t(t—1)/2 t+(a'p);x
X (=) [2t+ v+ 1, (b)) + t]'

Summing both sides from £ = 0 to «, and changing the order of summation on the
right-hand side, we have

(cr);wx] 2 [(ap)](—z) g ™"
r‘f’m[ (dn) |~ ; (1LY + te

t+ (ap); xz (b )y (C,), Y + t! _t; qu
X P‘bl‘l-l [2t + v + l,t + (bl)] . l+r+2¢'p+m|: ! (a,;), (dm) J.

Then using a technique similar to one used in the deduction of (2.1), we get the
general expansion

(Cr)) (6:);’&0&3 _ ad [(ap)]n[(et)]n(__x)nqn(n—l)lz
r—H‘I)m+"|: (dm), (fu) :| - nz=o LLIO)L[(f)lly + nl.

(a5) + m, (&) +n;z
(3.1) X p+t¢’l+u+1 [(bl) + n, (fu) + n, 2n + v+ l:l

(b )y (CT)7 Y + n, —n; qw
o ®Pptm [ l (a,), (dn) ] .

(3.1) is the g-analogue of a result due to Fields and Wimp [7; 24]. For p = 2,1 =0
and a; = a, a; = B it yields (2.1).
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4. In this section, I proceed to deduce a generalisation of the g-analogue of
Euler’s transformation for a.®; viz.,

M — — B atb—c
(4.1) 21 l:a’ lc)’ x] = (1 — 2¢°"7") c—sp 1®1 I:c & e cb’ " :l .

The result to be proved is:

ﬁlép[(aﬁl); ZJ —_ (1 _ qup+‘_ap)ap—Sp+l

(pp)
(4.2) o
ﬁ i An 2" 2$y [UP - SF+1 + Yo—1,Pp — Opt1 ;zqs"'ﬂqu] ’
e " pr + Yo
where
p—1 ( )
[(Tr -8+ '71—1]1lr[pr - ar+1]n,. tI;I [at+2 + ‘Y,_I]”'an Spy1—0or
A, = ’
[1]1!1- tI—I [Pt + ’Y,__I]”'
and

S=at+at - ta; o=ptpt-to, vr=mtmnt o+
r=123-;y=1and|z|<1,]¢| <1

For p = 1, this gives (4.1). To prove the formula (4.2), we multiply both sides by
2+ (1 — gt),,,1—aps -1 TePlace z by 2zt and take the basic integral from 0 to 1.
Then integrating both sides by making use of a result of Jackson [6], we get

. p-l ®
By(opte 5 ppt1 — apte) @ [(aﬁz)’z] =I1 2 4.2

(pp+1) =1 n,=0
S St 1ol el
n,=0 [].]np[pp + 'Yp—l]n,

X Sol t7p+a’+2_1(1 - qt)ﬂﬁ-‘-l_apq-z—l(l - thsp+‘—ap)¢p—3y+1 d(q: t)

(4.3) P ) = [op — Sp + Yoiln,lop — april
= An,-znr Z P d p71inpPp whilng
TI;I]. n'Z=0 np=0 [llﬂﬁ[«pp + 'Yp—l]ﬂp

X Bolvp + apte; ppt — apale?g"? 2170

Spt1 — 05, Yo + a,,+2;z:|
P .
X o 1[ oot - Vp
Then applying (4.1) on the right-hand side of (4.3), and dividing throughout by
Bylope ; ppr1 — oipio], we get the formula (4.1) with (p + 1) in place of p, which
completes the induction proof. This is the basic analogue of a result due to Mac-
Robert [2; 29, p. 363].

5. In this section, I deduce the basic generalisation of Saalschiitz’s theorem. To
do so, multiply both sides of (4.1) by (1 — 2)s,,, — ¢, and equating the coefficient
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of 2" on both the sides and simplifying, we get the required result in the form:

q)l: (ap1), =n5q :I - lop — Splalop — aptila
(pp), 1 — op + Spr1 — 1 [pp)nlor — Spiln

X ﬁl R [U'r -8+ 'Yr—l]n,[Pr - ar—l—l]n,[')’r—l - n]n,

(5.1) =1 =0 [1]"r[ap - SP + ’Yf—l]n,[l — Pp + Apt1 + Yr—1 — n]n,
p+1
H [at + ’Yr—l]n,
X t=r+2 q”r(sr+l_”r)+7p—l(ﬂp—l_Sp")'l) .

p—1
tI=I [Pt + 'Yr—l]n,.

This reduces to the basic analogue of the Saalschiitz theorem [1; 8.4(1)] for
P = 1. Moreover (5.1) is also the basic analogue of a result due to MacRobert
[2; 30, p. 365].

In particular, taking p = 3and a1 = ¢, 00 = b, s = ¢, s = d; p1 = ¢, ps = J,
ps = g in (5.1) we get the basic analogue of another result due to MacRobert [2;
p. 366), viz.,

(I)[ a,,b,c,d, —n;q :,
“lef,g,1+a+b+c+d—e—f—g—n

_letf+g—a—b—clg— d.
e+ Fg—a=b=c—dhld
X Zn: le — @) le — bll—nl,le)ld],¢"
o [llled+f4+g—a—b—cl[l +d— g — nllellfl,

Xq,[ e+f_a_b+p’f_c’p_n’p+d;q :I
Tletftg—a-b—ct+pl—gt+d+p—nftpl

(5.2)

Further, putting ¢ = ¢ and writing ¢ for d and f for g in (5.2), we have

[ a,b,c,—n;q :l_[e-l_f_a_b]n[f_c]n
ww‘sem1+a+b+c—e—f—n Tt f—a—1b—chifl

c,e —be—a, —mq
X s |:e+f_a’—b)e)1+c_f_n:l‘

which is a basic analogue of a result due to Whipple [10]. Further applying (5.3)
to the right-hand side of (5.3) we get the basic analogue of still another result due to
Whipple [10].
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Boundedness of Difference Kernels
of Bessel and Fourier Series

By Shih-Hsiung Tung

1. Introduction. Let o, , m = 1, 2, -- -, be positive zeros of Bessel functions
J,(x) of the first kind of order » = —3}, arranged in increasing order. The kernels
of Bessel and Fourier cosine series on [0, 1] are denoted as

M
(1) Bu(x; 1) = 2 27, (am)J o (omt) Jri1(otm)
m=1
and
M
(2) Cu = Cu(z;t) =1 4+ D2 cos (mazx) cos (mmt).
m=1
We define the difference kernel to be
(3) Du(z;t) = Bu(z;t) — Cu(z;t).
Two series S = .s; and T = Y. { are said to be equiconvergent if

limgse (S, — T.) = 0, where S, and T, are partial sums of the first n terms of
the series.

Here we study the boundedness (Theorems 1 and 2) of the difference kernel
and the equiconvergence (Theorem 3) of Bessel series of a Lebesgue integrable
function on [0, 1] and its corresponding Fourier cosine series. The proof of the
boundedness of the difference kernel of two series is mainly based on the applica-
tion of the asymptotic expansion of Bessel functions and their zeros. The equi-
convergence theorem, which is a direct application of Theorem 2, is a stronger
result obtained by a simple and straightforward proof comparable to the analogous
ones given in [6] and [8]. We notice that the cosine series may equally well be re-
placed by a sine or sine and cosine series.

2. Preliminaries. The following results are needed later.
LemMa 1. Ifadsreal,b 2 0and0 < n Sy — k =1 — 9 < 1 for some integer
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