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Boundedness of Difference Kernels 
of Bessel and Fourier Series 

By Shih-Hsiung Tung 

1. Introduction. Let am , m = 1, 2, * , be positive zeros of Bessel functions 
J,(x) of the first kind of order v _ -2, arranged in increasing order. The kernels 
of Bessel and Fourier cosine series on [0, 1] are denoted as 

M 
(1) BM(x; t) = E 2tJv(aimx)Jv( amt) J+2(a.m) 

m-1 

and 
M 

(2) CM CM(X; t) = 1 + E 2 cos (mirx) cos (mwrt). 
m-1 

We define the difference kernel to be 

(3) DM(x; t) = BM(x; t) - CM(x; t). 

Two series S = E si and T = E ti are said to be equiconvergent if 
.limno (S, - Tn) = 0, where Sn and Tn are partial sums of the first' n terms of 
the series. 

Here we study the boundedness (Theorems 1 and 2) of the difference kernel 
and the equiconvergence (Theorem 3) of Bessel series of a Lebesgue integrable 
function on [0, 1] and its corresponding Fourier cosine series. The proof of the 
boundedness of the difference kernel of two series is mainly based on the applica- 
tion of the asymptotic expansion of Bessel functions and their zeros. The equi- 
convergence theorem, which is a direct application of Theorem 2, is a stronger 
result obtained by a simple and straightforward proof comparable to the analogous 
ones given in [6] and [8]. We notice that the cosine series may equally well be re- 
placed by a sine or sine and cosine series. 

2. Preliminaries. The following results are needed later. 
LEMMA 1. If a is real, b > 0 and 0 < ? y< - k ? 1 - ?I < 1 for some integer 
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k, then Em=1 m sin (2mory + a) and EZ m1 Mb Cos (2mory + a) are bounded 
independently of a, y, and M. 

Proof. Let y = k + r and 0 < < _ r < 1 - X < 1. For the case 
b = 0, I ZM=1 sin (2mry + a) I < (sin 7r-) - is obtained from the formula 

M 

2 sin (7r-) E sin (2mori + a) = 2 sin (M~ri) sin [(M + 1)rD + a]. 
m=1 

Similarly, E m'=1 cos (2rm.7ry + a) I < (sin -7r')-. The case b > 0 follows from the 
case b = 0 by applying Dirichlet's test [3, p. 347]. 

The following result was given in [1, p. 382]. 
LEMMA 2. j 1=i m- sin (m + a) is bounded independently of a, and M, where 

0 _ r _ 27r > 0 and a -2 

It is known that [7, p. 199], for large value of x > 0, 

(4) J'(X) = CO (-)csp(x) + Ix sin p(x) + O(x- ), 

where 

(5) p(x) = -x + 1(2v + 1)7r. 
The mth zero am of J,(x) is given by asymptotic expansion [7, p. 506] 

(6) am = (m + v/2 - )7r + fm, 

where 

(7) + 

3m = 1= (4v1) 
8(m + v/2 - 1) + O(m4) = O(m'). 

From (5), (6) and (7), for x = am, COS p(am) = (1)m-l Cos 3m and sin p(m) = 

(-1) m sin (3m . By substituting these in (4) and using (6) and (7), we obtain by 
a calculation 

(8) J;+2(am) = ?7ramm[1 + O(m2)]. 

From Eqs. (4), (6) and (8), for x, t > 0 and large m, we have 

bm(x; t) = 2tJv(amx)Jv(amt)J-2i(am) 

= (t/x)112[1 + O(m2)] {2 cos p(am x) cos p(am t) 

2 _ 1 

+2 [X sin p(amx) Cos p(amt) 

+ 2 cos p(amx) sin p(amt)] + O(m-2)}. 

For fixed x E (0, 1), we take 5 such that 0 < ? _ min {x/2, (1 - x)/2}. And from 
(tlX)112 = (1 + (t -X)IX)12, we have 

(9) (tlX)1 = 1 + +0 t- _ ) -/2t x 
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where 0 < 0 < 1. Here, for t - x < 8, we have 

(10) ? < - 2(1 + (t - x)/x)-2 < 2-1/2. 

Now substituting (9) into bm(x; t) and multiplying out, we obtain 

bm(x; t) = bi(m) + b IN + bN() +- O(m-2), 

where 

bl(m) = 2 cos p(amX) cos p(amt) 

b 
- O'(t -x)* 2 cos p(aCx) cos p(amt) 

x 
2 _ 1 'I(t x)1 

b3(m) V 2 - + 

2 LxJ~2 
sin p(amx) co + cos p(aCamx) sin p(a..t)]. 

Denoting 
M 4 

BMv(x; t) E bm(x; t) -E Bk(M 
mzl k=1 

where Bk(M) = M l bk (k = 1, 2, 3) and B4(M) _ u O(m2), and together 
with (2) and (3), we have the difference kernel 

(11) DM(x; t) = (B1m) - CM) + B2(M + B3 M; + B4 (M 

3. Boundedness of Difference Kernel. By examining each term on the right 
hand side of (11), the following theorem shows that the difference kernel DM(x; t) 
of Bessel and Fourier cosine kernels on [0, 1] is uniformly bounded in a neighbor- 
hood of any fixed point in (0, 1). 

THEOREM 1. DM(x; t) is bounded independently (b.i.) of t and M at any fixed 
point x E (0 1) for t E N(x; 8) [x - 6, x + 81, where 0 < 8 < 
min {x/2, (1 - x)/2}. 

Proof. Throughout this proof, E means 
(i) B4(M) in (11) is certainly b.i. of M and t. 
(ii) To show that B3(M) is b.i. of 111 and t in N(x; 8). Since x - 0 and t _ x/2, 

it is sufficient to show that 1I 2am-1 sin p(amx) cos p(amt) and E 2am-1 cos 
p(amx) sin p(amt) are b.i. of M and t. But from (5) and trigonometric addition 
formulas we only have to consider 

B3) - E am' sin (am(t + x) - a') and B3m - am sin (am(t - 

where 

(12) a (2v + 1)7r/2. 

Now by letting 

(13) 1= (t + x)/2, b = 7r(2v - 1)(t + x)/4 - 7r(2v + 1)/2, 
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and noting a.m =n,((l + O(m-')) from (6) and (7), we have 

MA" ) Z= E am' sin (2m7m7 + b) Cos (2iI#m) + E a,,-' Cos (2m7r77 + b) sin (2-#,fm) 

= E (mir)Y sin (2minq + b) + Z O(FM2). 

Thus, from Lemma 1, B3m) is b.i. of M, 7 and b; therefore, it is b.i. of M and t in 
N(x; 8). Next, for t E N(x; 8), by setting 

(14) -r (t-x), a = (2v-1)/4 

we similarly have 

B(2 )= E a.,7' sin ((in + a)r) Cos (Irn~ir) + 1 a.j'cos ((m + a)v) sin (,,t/r) 

= E(m'r)' sin ((m + a)r) + E O(mr2). 

It follows, from Lemma 2, that B32) is b.i. of M, a and t for t in N(x; 6). Therefore, 
B3(m) is b.i. of M and t in N(x; 8). 

(iii) Next we consider B2(m). By a trigonometric addition formula 

B2(m) ('(t -x)/2) Z cos (a^m(t + x) - a') + ((t -x)O'/x) E cos (am(t -x)) 

21B 2 + 22 

By means of (6) and vq and b defined in (13), we have 

cos (am(t + x) - a') = cos (2mnirq + b) cos (23m77) - sin (2mirn + b) sin (2/3m7i). 

Here, noting sin (21,mi) = -i(l - 4v2) (4m7r)-l + O(m-2) and cos (2flrn-i) = 1 + 
O(m-2) from (7), therefore by Lemma 1, B2v) is b.i. of M and t in N(x; 8). Next, 
from (6), 

B2m) - (?O'/irx) E cos ((n + a) ?) cos (I.m./7r) 

- (?O'/7rx) sin ((m + a)v) sin (ImW/r) 

where a and r are defined in (14). From cos (Im?/7r) = 1 + O(m-2) and 

I (?O'/7rx) Cos ((in + a) ) I < I tO'/(7rx sin (r/2)) 1, 

which is bounded for 0 < 1 8 1 _ !s 7r/4, since I (r/2)/sin (r/2) 1 is bounded, 
it follows that the first sum of B('/) is b.i. of Al and ?. The second sum of B(2 ) is 
b.i. of M and r by Lemma 2, by noting sin (I0m./7r) = (1 - 4v2) (8mr)r + O(m2). 

Hence B2(M) is b.i. of M and t in N(x; 8). 
(iv) Lastly, we consider Bi(m) - CM. Write as in (ii) 

B1(M) - CM = E cos (am(t + x) - a') + Z cos (am(t - x)) 

-[1 + E cos (nz7r(t + x))]- cos (mn7r(t - x)) 

= II + I2 -13 - I4. 

Here 1, is bounded similarly as B(m?) in the case (iii) an11d I3 is bounded by Lemma 
1 because 0 < 38 ? t + x ? 2 - 36 < 2; both b.i. of A and tin N(x; 8). Now 

I2 -1 = cos (((m + a) ) Cos (#3m?/7r) 

- I sin (((m + a)r) sin (0m./ir) - ECOS (C ). 
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The boundedness of the second sum was a case in (iii). Now noting cos (,mW/7r) = 
+ O(m-2), we can write 

E cos (((m + a)r) cos (O/3rnW/) - E cos.() =- Bj* + Z O(rM-2), 

where 

B = [cos ((nt + a)r) -cos (ut?)] 

-2 sin (aD/2) Z sin (( i + a/2)r) 

Hence, by Lemma 1, 

B* _ 2 sin (aP/2)/sin (?/2) I 
which is bounded on 0 < 1 I 1 _rb < 7r/4, since a = (2v - 1)/4. Therefore, 
Bj(M) - CM is b.i. of M and t in N(x; 6). 

(v) Thus, from (i)-(iv), DM(x; t) is b.i. of Ml and t in N(x; 8) c (0, 1) with 
8 ? min {x/2, (1 - x)/2}. This completes the proof of Theorem 1. 

Now we show the boundedness of DM(x; t) on [0, 1] for any fixed x in (0, 1). 
From (2) 

M M 
Cm CM(X; t) = 1 ? Z cos (rn7r(t + x)) + E cos (m7r(t -x) 

and hence by Lemma 1, CM is b.i. of M and t on [0, x - 8] U [x + 6, 1] for every 
fixed x in (0, 1). Also from an inequality in [7, p. 584) 

I B (x; t) I < 4 d2t1/2 

where c and d are positive constants, 0 < x < 1, 0 ? t ? 1 and x F t. Hence 

|Bm(x; t) I - ,rO6^2(1 - X)X112' 

that is, BM is also b.i. of M and t on [0, x - 8] U [x + 6, 1] for fixed x in (0, 1). 
Combining the above results with Theorem 1, we obtain 
THEOREM 2. DM(x; t) is b.i. of M and t on [0, 1] for any fixed x in (0, 1). 

4. Equiconvergence. The Riemann-Lebesgue theorems for Fourier series [5, 
p. 403] and Bessel series [7, p. 589] are respectively as follows: 

Let f be Lebesgue integrable on [0, 1]. For x in (0, 1) and 8 > 0, we denote 
A = (0, 1] - (x - 6, x + 8). Then 

ff(t)Cm(x; t) dt -* O as M - oc. 

If fA t12f (t) dt converges absolutely, then 

(15) ff(t)BM(x; t) dt -O as M-*cc. 

Hence by taking f (t) =- 1 

JBM (;t)dt -0 asM -31 c 
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Then, by means of a general convergence theorem in [2, p. 425], (15) follows for a 
Lebesgue integrable function f. 

Also from (3), we immediately obtain 

(16) ff(t)DM(x; t) dt - O as M m-+ . 

We also need the absolute continuity of the Lebesgue integral [4, p. 148]. Let 
E > 0, there exists a 8 > 0 such that for every measurable set e C E of measure 
me < 6, the inequality ff I f (t) I dt < e holds. 

With these preliminary results we obtain the equiconvergence theorem of 
Bessel and Fourier cosine series as follows. 

THEOREM 3. Let f be Lebesgue integrable on [0, 1]. Then the Bessel series of f is 
equiconvergent with its Fourier cosine series at every point x E (0, 1). 

Proof. Set 

BM*(x; f) = ff(t)Bm(x; t) dt, 

CM*(X; f) = ff(t)Cm (x; t) dt. 

Then we are to show that 

DM*(X;f) = f f(t)DM (x; t) dt -0 as M .oo. 

From Theorem 2 we know that I DM(x; t) I < K for all M and t E [0, 1] and fixed 
x E (0, 1). For any E > 0, from the absolute continuity of Lebesgue integral, 
there exists a a > 0 such that 

(17) f|i (t) I dt < 

where A' = [x - 8/2, x + 8/2]. Denote A* = [0, 1]- A'. Hence, by Theorem 2 
and Eqs. (16) and (17), 

1 Dm*(x;f) I < f (t)DM(x; t) dt + f f(t)DM (x; t) dt 

< E/2 + E/2 = e 

for sufficiently large M, which completes the proof. 
Here we notice that the cosine series may equally well be replaced by a sine 

or sine and cosine series. 
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On a Numerical Solution of an Integral 
Equation with Singularities 

By Robert G. Voigt 

1. Introduction. Annular airfoil theory gives rise to Fredholm integral equations 
of the second kind in the following form: 

(1) f(x) = g(x) + f G(x, y)f(y) dy, O < x < 1, 

where the kernel G (x, y) has the form 

G(x, y) = (Y) dz, 

and g(x) is a continuous function; in particular it may be of the form 

(2) g(x) = r(x, Z) dz. 

For what follows, we will assume that q(y, z) and r(x, z) are continuous functions 
as they would be in most physical problems; however, the results are valid for more 
general functions. By using a Fourier series technique given in Collatz [1], we are 
able to neatly evaluate the singular integrals involved, but as will be seen, this is 
not the only advantage of the technique. We also obtain a kernel function of de- 
generate type; that is 

G(x, y) =EMi(x)M (y ). 

Then the integral equation may be solved using a method applicable to degenerate 
kernels such as the simple one given in Mikhlin [2]. 

An example of the method applied to an integral equation arising in annular 
airfoil theory is included at the end of this paper. 

2. Handling the Singularities. The first step in handling the singularities is to 
apply the changes of variables suggested by Collatz [1]: Let 

x 2(1 + cos 6), 

y (1 + cos 

z 2(1 + cos (). 
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