
Computation of Successive Derivatives of f(z)/z* 

By Walter Gautschi t 

1. Introduction. It is sometimes necessary to calculate derivatives of the form 

(1.1) dn(z) - dz (fz ) (n = 0 1, 2, ..), 
dzn z/ 

where f is a function whose derivatives can be formed readily. Analytic differentia- 
tion in (1.1), while elementary, is obviously tedious, and the resulting expressions 
are of doubtful practical value. In the following we present a simple and effective 
recursive algorithm to generate these derivatives. As an example, we consider the 
cases where f(z) = eZ, f(z) = cos z, and f(z) = sin z. 

Our main observation may be paraphrased in the following surprising way. The 
calculation of a large number of derivatives (1.1) at a fixed point z is a stable process 
if the function g(?) = f(r)/? has a pole at r = 0, and an unstable process if g(?) is 
regular at r = 0. 

2. The Recurrence Relation. Let z # 0 be arbitrary complex, and let f(r) be 
analytic in the circle I- z I < r, r > z 1, which includes the origin r = 0. Our 
point of departure is the identity 

f(Z) -f(0) - f'(tz) dt. 

Differentiating n times gives 

(2.1) dn(Z) - (-1)n f+1f(0) = f tf(n+ )(tz) dt. 

Denoting the integral on the right by In X integration by parts yields 

In + n In-l1 f (Z) 
z z 

hence, together with (2.1), the recurrence relation 

n ~~f~~(z) (n= ,2,3 *. 
(2.2) dn(z) + n dn,-1(z) = (n =1 2 3 .. 

z 

We note that (2.2) represents a linear inhomogeneous first-order difference 
equation for dn . Computational aspects of such difference equations were discussed 
at length in [1]. It was noted there, that a naive application of (2.2) in the forward 
direction is accompanied by an undesirable build-up of rounding errors whenever 
the quantity 

dohn 
Pn = dh 
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becomes large in absolute value for some n. Here, h, denotes the solution (nor- 
malized by ho = 1) of the homogeneous difference equation that corresponds to 
(2.2), i.e. 

h= (1)n - 

Numerical instability is particularly prominent if limn-o I p. = ?, or, equiva- 
lently, if 

(2.3) lim n = 0. 
nab hn 

By (2.1) we have 

(2.4) = f(O) + (-f)( Z tnf(n+l)(tz) dt. 

The second term on the right, disregarding the sign, we recognize as being the nth 
remainder (in integral form) of the Taylor expansion of f(0) about z. Because of the 
analyticity assumption made at the beginning of this section, this remainder tends 
to zero, as n -- o, and so 

(2.5) lim dn f(0) 
na. hn z 

In particular, if f(0) = 0, then (2.3) holds, and we have numerical instability. On 
the other hand, if f(0) 7 0, then 

lim pn = f(z) 

and I pit I is bounded for all n, provided dn(z) does not vanish for some n. Hence, 
no serious numerical difficulties should attend the use of (2.2), unless If(z)/f(0) I 
is very large, or I pa I reaches a large peak prior to converging to the limiting value 
f(z)/f(O) 1 

An alternate proof of (2.5) can be given using Cauchy's formula for the nth 
derivative of an analytic function, 

2n) -2rij i; (;_Z)n+iA; 

If f(0) = 0, we may take for C a circle about z containing the origin and contained 
in the circle of analyticity of f. If f(0) 7 0, we must add to C a small contour Co 
encircling the origin in the negative direction. Taking for Co a small circle, and 
letting its radius tend to zero, we arrive at 

d (Z) = (_1)n ? ff(0) + n2 f()) d+ 

Hence, 

(2.6) Z dn = f(0) + (-2) ( Z y A0 dg. 
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Since f( )/ is bounded on C, and 

I - z 
it is clear that the integral in (2.6) tends to zero, as n - oo, and so we again ob- 
tain (2.5). 

We may summarize as follows: Let f be analytic in a circle about z which includes 
the origin in its interior. Then the generation of a large number of derivatives (1.1), 
using forward recursion by (2.2), is in general numerically stable if f(O) $ 0, but 
highly unstable if f(O) = 0. 

We observe, however, that forward recursion by (2.2), even in the case f(O) = 0, 
may still be adequate, if only a relatively small number of derivatives are required. 
In fact, the recursion should be adequate as long as n < I z 1. 

3. Recursive Algorithm in the Case f(O) = 0. We take advantage of a remark 
made on p. 25 of [1]. Since I p I -> oo, we may apply the recursion, (2.2) in the 
backward direction, starting with n = v sufficiently large, and using zero initial 
value, 

(3. 1) d[] = (f(n,(z) - zdn[vI)/n (n = v, v- , * 1), dv[1 = 0. 

Then, for n > 0 in any bounded set, we will have 

dn 1[- dn as v -- oo . 

Moreover, the relative error of dn [vl is given by 

(3.2) dn[v] 
- dn =P 

dn PP 

It remains to estimate a reasonable starting value v for n, given, say, that the 
results for n = 0, 1, 2, ... , N are to be accurate to S significant digits. According 
to (3.2), we must require that I Pn/P_ I < e for all 0 < n ? N, where 

= 210S 

that is, 

(3.3) ~ n! I Z ;-n dv | < > (n = O 1,2, .. ,N). 

In addition to the analyticity assumption introduced earlier, we now assume that 
f (n) is uniformly bounded, and bounded away from zero on the segment from 0 to z as 
n - so. Then it is clear from (2.1), where now f(O) = 0, that I d,/dn I < 1 for v 
sufficiently large. Hence, it appears reasonable to replace I d,/dn I in (3.3) by 1, 
and to require 

(3.4) n! I Z T -n < (n = O 1 2, *, N). 

Denote the expression on the left by pn . Clearly, { pI is a sequence of positive 
numbers which initially decrease, until n is near I z 1, and from then on increase 
rapidly to so. (The case I z I < 1, in which pn increases from the beginning, is of 
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0 
-n 

IZI no 7V 

FIGURE 1. Behavior of pn = nI z x,-/v! 

little consequence for the following.) Denote by no the integer n > 0 for which 
Pn is near to po "for the second time" (see Figure 1), hence I z In!/n near 1. Then, 
(3.4) is implied by po < E, if N _ no, and by pv ? e if N > no. We may replace 
(3.4) therefore by 

< C- (N < no), Nvl Iz~v-N e (N> no). 

Using Stirling's formula, these conditions are adequately approximated by 

( EV1 - (N _ no), < v Ee|z (N > no). 

We note, incidentally, that again by Stirling's formula, 

noI[e zI], e=2.71828-. 

The first inequality, upon taking logarithms, can be written in the form 

(3d5) v __n _> e I z | (e jz 1 e Iz |' 

where 

= S In 10 + In 2. 

Similarly, the second inequality amounts to 

v in (II)N In (e I z ) s 

which can be written in the form 

V V ~~ ~~~~V S (3.6) - 1) In (e ) + N In N>N 

Since certainly v > N, and moreover N > e I z j (N now being larger than no, and 
no t e j z j), the first term on the left is >0. Hence, (3.6) will be satisfied if we 
require 

( > 
(3.7) ILn - > 

N NN' 
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Both conditions (3.5), (3.7) now have the form t In t > c. Denoting by t(y) the 
inverse function of y = t in t (t > 1), we obtain our final estimate of v in the form 

(3.8) v _ e I z |t (II) (N < no), v > Nt (N (N > nto). 

We note that in (3.8) the function t(y) need only be available to low accuracy. 
Formulas giving 1% accuracy, or better, may be found in [2]. 

The algorithm just described may still be unsatisfactory, numerically, if I z 
is relatively large. The recursion (3.1) then is likely to suffer from loss of accuracy, 
due to cancellation of digits, particularly for n near 1. For such n, indeed, z/n in 
(3.1) will have large absolute value, yet d[']1 has normally the same order of mag- 
nitude as dn1t. The difficulty may be resolved by applying (2.2) in forward direction 
as long as n < I z 1, and using the backward recurrence algorithm described above for 
the remaining n with I z j < n < N. 

4. Examples. Consider first f(z) = eZ, and let 

do()=dZn (;) 

Then (2.2) gives immediately 

n _e 
(4.1) dn(z) + - dn-1(z) - (n = 1, 2, 3, ). 

z z 

Our theory of Sections 2 and 3 clearly applies. Since f(0) = 1, it follows that (4.1) 
is numerically stable in the forward direction. We note, incidentally, that 

(4.2) dn(z) = (-1) ; e een(-Z) 

where 
n zk 

(4.3) en(Z) = 
k=O k 

is the nth partial sum of the exponential series. 
Likewise, if f(z) = cos z, and 

c'(z) - d' (cos z\ 
n()=dznk z } 

we obtain 

(4.4) cn(z) + 
n 

Cn-1 (Z) = rn(z) (n = 1, 2, 3, ...), 
z 

where Jrn(z)} I= = 1 -sin z, -cos z, sin z, cos z, * *. Like the previous recursion, 
(4.4) is numerically stable. On the other hand, if f(z) = sin z, and 

Sn(z) = ?d (sin z) SnZ dzn z } 
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then 

(4.5) Sn(Z) + 
n 

Sn-1(Z) cr?(z) (n = 1, 2, 3,) z 

Adn (z) =cos z, -sin z, -cos z, sin z, * }, is numerically unstable, and the 
algorithm of Section 3 should be applied, including the device mentioned at the 
end of Section 3. 

In terms of (4.3), we may also write 

Cn (Z) = (2z)n! [eizen(-iZ) + e tzen(iz)], 

s (z) = (2Z)+ ! [eizen( iz) -e ezen(iz)], 

as follows readily from (4.2) and Euler's formula. 
The functions Sn(x) have found wide applications in diffraction theory, and are 

extensively tabulated (see [4]). The generation of dn , cn , and n X may also be useful 
for the analytic continuation of the exponential-, cosine-, and sine-integrals, re- 
spectively. ALGOL procedures generating dn (x), Cn (x), and sn (x) for real x may 
be found in [3]. 
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