
Minimax Polynomial Approximation 

By Harry H. Denman 

Abstract. Some new methods for obtaining the minimax polynomial approxima- 
tion of degree n to a continuous function are introduced, and applied to several 
simple functions. The amount of computation required is substantially reduced 
compared with that of previous methods. 

1. Introduction. In a previous paper [1], a study of the automatic generation 
of "optimized" subroutines for the computation of function values was initiated 
(using polynomial approximations). The procedure described therein was roughly 
the following. The programmer indicated the function f(x) to be approximated 
(limited in [1] to sin yx, cos yx, exp yx, sinh yx, and cosh yx), the interval [a, b] 
of x (assumed finite), and the maximum absolute error tolerable. For these func- 
tions, the exact coefficients of their expansions in Chebyshev polynomials are known, 
and were calculated until the first (nonzero) coefficient in this expansion was less 
than the given permissible error. The resultant polynomial was then converted 
into a power series in x for computation. 

The limitations of the above work were substantial. It was assumed that the 
exact coefficients in the expansion of f(x) in Chebyshev polynomials were known 
in terms of reasonably simple functions. In addition, this polynomial approxima- 
tion is not the polynomial of minimum-maximum absolute error (minimax poly- 
nomial), and it is the latter which is often the desired approximation. In this paper, 
the "leveling" problem will be considered, i.e., a procedure for obtaining the minimax 
polynomial approximation to a continuous function from a "nearby" polynomial 
approximation. Some methods for improving the speed and accuracy of this cal- 
culation will also be presented, and several examples given. 

2. Method. It is well known [2] that there exists a minimax polynomial approxi- 
mation to a continuous function f(x) on the closed interval [a, b]. Also, there exists 
a set of at least n + 2 points {xj*}, and a minimum-maximum error E*, such that 

(2.1) f(xj*) = Pn*(xj*) = (-1)jErk 

where Pn*(x) = Ck*Xk is the minimax polynomial approximation. Let Pn - 
E CkXk be a polynomial of degree n in x. Then if the set of points {xj ,} approxi- 
mating {xj*} is used in (2.1), it can be written 

(2.2) P.(xji,) + (-1)'Ei = f(xj i)X 

which in general has the solution (Ck,i , Es). The error function Ei(x) resulting from 
the use of Pni(x) = Ckikas an approximation for f(x) is given by 

(2.3) ei(x) = f(X) - Pn i(x) 

A number of different iterative procedures for obtaining Pn*(x), based on the 
work of Novodvorskil and Pinsker f3], have been proposed. In these procedures one 

Received July 29, 1965. 

257 



258 HARRY H. DENMAN 

chooses an initial set of n + 2 points {xjo} and substitutes them in (2.2). The solu- 
tion of this set of linear equations yields the coefficients Ck,o and Eo (assumed # 0). 
With these coefficients, the error function eo is obtained, using (2.3). Shenitzer [4] 
then finds the point at which eo attains maximum amplitude, replaces one of the 
{x;,o} with it such that Eo alternates in sign on this new set, and repeats the process 
until Ei converges. (His applications were to functions defined on a point set, but 
the method is essentially unchanged.) The deficiencies of this method are the 
amount of searching required to find the maximum of I ei 1, and the fact that the 
equations (2.?) must be solved on each iteration and a substantial number of 
iterations may be required. Also, no method of choosing the initial set of points is 
indicated. 

Fraser and Hart [5] start with the set {x;,o} which corresponds to the extrema of 
T?+1(x), the Chebyshev polynomial of the first kind of degree n + 1. Only the 
interval [-1, 1] was considered, as [a, b] can be mapped onto [-1, 1]. To obtain a 
new set of points for use in (2.2), a search is made for all the extrema of Eo by search- 
ing over a number of steps from each xjo in the direction of increasing I Eo I until the 
extrema are found approximately, then repeating the process with the new set 
fxj,1}, etc. 

Murnaghan and Wrench [6] use the Chebyshev polynomial expansion for 
f(x) as the first approximation to Pn* i.e., 

n 
PnO(x) = ZamTm(x). 

0 

Improvement to this approximation is made by replacing xj i with the xj ,11 of 
(2.5a) below. As pointed out in [1], the Chebyshev expansion for f(x) is usually not 
known, and, as will be shown later, a better PnO can sometimes be obtained. 

In the present method, the extrema of Tn+l(x) are used to obtain the starting 
set {xjo} = {cos jr/(n + 1)},j = 0, 1, * * * n + 1. (If an+1 = 0, the next Chebyshev 
polynomial whose coefficient am is nonzero is used.) The method given below may 
be used to obtain succeeding sets. Also, a procedure for determining directly the 
changes in the coefficients of Pn~i(x) is given. In the next section, the problem is 
broken into smaller parts for easier calculation of Ck,O 

Consider the error function at the ith step 

(2.4) ei(x) = f(x) - E CkiXk, 

where the Cki have been obtained as the solution of (2.2) with the set {xj1,}. To 
obtain a set of extrema of ei, parabolas are passed through the points Es(xj ,) 
using the expansion 

(x) *e (x +e(xj i)(x- 
_ 

Xj ) + ,oi (xj i) (x- _ Xj i,)$ 2 , 2. 

To this approximation, the point xji+l where Ej has an extremum is given by 

(2.5a) xj s+l = Xj,i -Ei1(xji)/e6 (xj'i)Y 

or 

(2.5b) /xji = - xj i = -EAxj i (xj i) 
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which is also used in [6]. In this way a new set {xj?i+1} may be generated. To insure 
convergence, one may test ei(x) to verify that it alternates on the set {xj i+1}. 

In general, E will not be 0 at the end points a, b, or - 1, 1. However, it is common 
that the end points are members of the set { xj*}. In the examples considered here, 
this was the case, and therefore - 1 and 1 were retained in all the sets {xj3i}. Differ- 
entiating (2.4), 

(2.6) Ei (x) = f'(x) - kCk i 

(2.7) E"(x) = f"(x) - E k(k - 1)Ck, ix k, 

so that f(x) must be twice differentiable at the points xi i (except the end points, 
which here are assumed always in the set). 

Consider the changes in the set of equations (2.2) when the set {x4j i is changed. 
Since the changes in the coefficients Cki and the error Ej are usually small even for 
appreciable changes Axj, , only first-order terms in ACk,i and AEj will be retained, 
and terms to and including (Axj,i)2. To these orders 

(2.8) ACk,iXj,-i +(-1)jAEi = [f(xj,i) - Z Ck,ikX ,i]AXji 

+ [f (x, i) - ZCkikk(k -l)Xj 2](AXj i) /2 

But from (2.6) and (2.7), the bracketed quantities are Ei'(xji) and Ei"(xji), and 
(2.8) may be rewritten 

(2.9) E ACkix~,i + (-1)jAEi = E'(xji)Ax1,i + e(xji) (Axji)2 /2. 

If (2.5b) is used to obtain Axj, i ,(2.9) becomes 

(2.10) E ACki ix, i + (-1 ) jAEi = - [e (xji)]2/[2e" (xji)] 

The right side of (2.10) can also be written -e (xj, i) (Axj, i)2/2, so that the changes 
ACk, i, LAEi are quadratic in the zAxj3i . Unless the matrix [Xk, (-1)] is ill-con- 
ditioned (see Section 6) or e (x, i) is large, small changes in {x, i} yield very small 
changes in (cki , El). Also, the coefficient matrices for (Cki , Ej) and (LCki , LEi) are 
identical. 

3. Decomposition into Even and Odd Functions. From Section 2, the initial set 
of approximate extremal points is here chosen at the extrema of T.+, (x). Thus, if 
x;,o is a member of the set, so is -xjo . This permits the decomposition of Pno and 
f(x) into even and odd parts as follows. 

Case I. n even. 
If n is even, (2.2) becomes 

(3.1a) Pn(xj,0) + (-l)jIo f =f(xjo) 

and for -xjo, 

(3.lb) P.(-xjo) + (-l)j+'1Eo =f(-jo). 

Adding, one obtains 

(3.2) Pn,(Xj o) = fe(xj0) 
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where 

(3-3) fe(x) = [f(x) + f (-x) ]/2, 

and 

(3,4) Pne(X) = C2iX2, 
i=O 

where r = n/2. Only the r + 1 points x;,o > 0 are needed. 
Subtracting (3.lb) from (3.la), one obtains 

(3.5) Pn?(x1,0) + (-1)jEo (xjo) 

where 

(3.6) f(x) = [f(x) - f(-x)]12, 

and 
r-1 

(3.7) Pn(x) c2i+X1 

Again, only the r + 1 points xjo > 0 are needed. If f(x) is even, one can show that 
Pn*(x) is even, and the above is not used; since an+1 = 0, the extrema of the error 
function are assumed approximately at the extrema of Tn+2(x). Then (3.8) below 
is used at xjo = cos jr/ (n + 2), j = 0, 1, * * * r + 1. 

Case II. n odd. Similarly, for n odd, one obtains 

(3.8) Pne(Xj0) + (-1)jEo = fe(Xjo) 

and 

(3.9) Pn (xj o) = Pxj 0) 

using the (n + 3)/2 points xj o > 0. If f (x) is odd, Pn*(x) is odd, and (3.5) is used 
at xjo = cos j7r/(n + 2),j = 0, 1, ... (n + 1)/2. 

Thus, if f is neither even nor odd, both cases produce two smaller independent 
sets of simultaneous equations for (Ck,O, Eo), which substantially reduces the labor 
in solving them. Also, one may calculate and store the inverses of the above ma- 
trices once (with extra precision, if necessary) for reasonable n values, instead of cal- 
culating them each time they are needed. 

4. Applications. 
A. The first example is a trivial one, but interesting in that, in a number of cases, 

it gives the exact result without any iterations. Consider any continuous even fune- 

tionfe on [-1, 1], for which the minimax linear polynomial approximation co* + c1*x 
is desired. Since fe is even, cl 0, and if (3.8) is used at {x;,o} = { 1, 0O, 

(4.la) CO-Eo = fe(1), 

(4.1b) c0 + Eo = fe(O), 

or 

(4.2a) CO = [f (0) + fe(1)]/2, 

(4.2b) Eo = [fe(0) -fe(l)]12. 
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TABLE 1 

f(x) = cos (7rx/2) in [-1, 1] 

k Ck,O Ck,1 Ck ak 

0 0.99940330 0.99940322 0.9994032 0.99939655 
2 - 1.22279688 - 1.22279674 - 1.2227967 - 1.22274315 
4 0.22399027 0.22399028 0.2239903 0.22393664 

Eo El E* E 

0.00059670 0.00059677 0.0005968 0.00060345 

These are the minimax coefficient co* and error E* iffe(0) and fe(1) are extrema of 
on [-1, 1]. Such common functions as cos (7rx/2) andJo(x) satisfy this condition. 

B. The second example is f(x) = cos (irx/2) on [-1, 1]; P5*(x) is desired. Since 
P5* must be even, 

Ci = C3 = C5 = 0. 

Using (3.8) at {xj o} = { 1, 23, 2, 01 one obtains 

(4.3a) cO,0 + c2,0 + c4,0 -Eo = 0 

(4.3b) com + (4)C2,0 + (A)C4,0 + Eo = cos (v/3-ri4) 

(4.3c) cOO + ()c2,0 + ()c4,0 - Eo= cos (r/4) 
(4.3d) coo + Eo = 1. 

The exact inverse of the matrix A above is 

1 -2 2 5 

(4.4) =- ( -\12 20 12 -20 
6 16 -16 -16 16 

-1 2 -2 l- 

and the solution of equations (4.3) is given in the first column of Table 1. 
Using (2.10), the change in the coefficients Cko and Eo may be written 

(4.5) Alo = -TO, 

where AO and Fo are the column vectors 

AvcOO O 

O= AC2,o , r0 = (E I )2/f 

AC4,o j (E2') 2/IE2"f 

_tAEo _j O 

where (Ei')2/2E1" is evaluated at x1,O = V3/2, and (E2')2/2E2" is evaluated at X2, = 2. 
To,1 is 0 because the point xo = 1 is in the set {xj*}, and TO,4 is 0 because, since 
cos (rx/2) is even, E is 0 at x4,0 (thus 0 is retained in the set {xj ,} also). Then 

(4.6) AO -=A- 
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and, using (4.4), one obtains 
-F-0751 

AO= 10-7 
1.45 . 

0.05 

L0.75 

When these small corrections are added to (Cko , Eo), the results given in the second 
column of Table 1 are obtained. The values Ck*, Ek* are taken from [6], and agree 
with these results to seven decimal places. The coefficients Ck are those resulting from 
the Chebyshev expansion of cos (=rx/2); E is their error at x = 0. 

C. The third example is f(x) = ex on [- 1, 1]; P5*(x) is desired. (Although the 
interval [- 1, 1] is used here for convenience, it is not the most appropriate interval 
for floating-point computations, as discussed in [1].) Then fe(x) = cosh x, and 
f(x) = sinh x, and, since n is odd, the set {xjo} = { 1, N/3-/2, 2, 01 is used. Then 
(3.8) becomes 

(4.7) ACoe = F, 

where A is the matrix of equations (4.3) and Coe and Foe are the column vectors 

rCm o cosh 1 

Coe = 
C2,0 Fe= cosh (N"3/2) 
C4,0 cosh 2 

LEoJ cosh 0 
(Note that these are also the initial coefficients if P5* is desired for cosh x in [-1, 1].) 
For the odd coefficients, (3.9) yields 

C1 + c3 + c5 = sinh 1, 

Cl + 1C3 + A9 c5 = (2/V'3) sinh (va/2), 

C1 + 4C3 + 1 c5 = 2 sinh 2 

The matrix B corresponding to these equations has the exact inverse 

3 -6 6 

(3) -16 30 -141 
16 -24 8 

VWhen the matrices A-1 and B-1 are used with the corresponding column vectors, 
the results Ck,O , Eo given in the first column of Table 2 are obtained. 

The changes Aoe (in the even coefficients and Eo) are given by 

,Aoe = A_F -oe, 

where 

(~e ) 

(! 

l 

) 

2/E1 

+ (E5')2/E5/ 

2 /)2 /I2 + (34') I/4 
2 ( IE') 2/ E3 
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TABLE 2 
f(x) = ex in [-1,1] 

k Cko l Ck,l Ck* Ck 

0 1.00004498 1.00004475 1.00004475 1 .00004478 
1 1.00003825 1.00003845 1.00003835 1.00002229 
2 0.49919516 0.49919697 0.49919699 0.49919676 
3 0.16642495 0.16642433 0.16642465 0.16648887 
4 0.04379552 0.04379370 0.04379370 0.04379392 
5 0.00873800 0.00873841 0.00873819 0.00868682 

Ek ,0 IEk,l Ed 

-0.00004498 -0.00004521 -0.00004519 - 0.00004478 

where the subscripts of e and E indicate evaluation at the points xo, x1, = 1, 
-3/X/2, 0, 4, - 3,\/2,-1, respectively. The changes A00 in the odd coefficients 
are given by 

A00 = -B llOO7 

where 

roe0 
1 2 [()2/El// _ (E5/,2/,65/,,, - ()2El i - 

L ( E2' )2/2/" - (E4/ )2/E4" j 
These changes result in the coefficients Ckl and E1 given in the second column of 
Table 2. The even coefficients are substantially improved, while the odd coefficients 
are slightly over-corrected. The coefficients Ck*, given in the third column of Table 2, 
were obtained by four iterations of a procedure similar to that in [6]. Considering 
the size of E*, no further iterations are indicated. The coefficients Ck resulting from 
the expansion of ex in Chebyshev polynomials are given in the fourth column of 
Table 2. E is the error, using this approximation, at x = 0. 

6. Discussion and Conclusions. In this paper, some new methods for obtaining 
the minimax polynomial approximation to a continuous function f(x) on [-1, 1] 
have been introduced and applied to several simple functions. Basically, one seeks 
successive sets of points {xj, i} converging to the set {x;*} which yields the minimax 
polynomial P,,* and the minimax error E*. The starting set {xjo} is chosen at the 
extrema of the next Chebyshev polynomial whose coefficient in the expansion of f(x) 
is nonzero. Since this set is symmetrically distributed in [- 1, 1], the initial problem 
can conveniently be broken into even and odd parts, as shown in Section 3. The exact 
inverses of the matrices involved in the first step need be calculated only once. 

The initial error curve Eo is used to determine the quantities E' and e" at the initial 
points (except for x0,o = 1 and Xon+l = - 1, which are assumed in the set xj*). The 
first-order changes ACk1o and AEo are then obtained, using the same matrix or matrices 
as before. If further iterations are required, the error curve El, resulting from the use 
of these modified coefficients CkO + ACk,0 is used to obtain the set {xjl} (which is, in 
general, not symmetric). In each iteration, the matrix formed from [4k , (-j1) ] can 
be used twice, once to obtain Cki , Ei, and again to obtain changes in these quanti- 
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ties. In the examples considered here, only the initial iteration was required to ob- 
tain the minimax polynomial to satisfactory accuracy. 

For f(x) = cos (7rx/2), the coefficients Cko obtained from the extrema of T6 are 
much closer to the Ck than those from 5 amTm(x) = CkX, the expansion of 
cos (7rx/2) in Chebyshev polynomials (see Table 1). However, for f(x) = eX, the 
even coefficients of { Ck,o} are slightly poorer than those Ck obtained from the direct 
Chebyshev expansion, while the odd coefficients of Ck,o are very much better than 
those of {Jk} (Table 2). More important, the labor in obtaining the Chebyshev co- 
efficients is saved. 

The conditioning of the matrices used in this process, and the precision necessary 
in obtaining E, are discussed in [5]. Concerning the former, since small changes in the 
xj X ordinarily change Ck,i , Ei much less, the simultaneous equations (2.2) should be 
regarded as well-conditioned. If an accuracy (in approximating f) less than full 
single-prevision is adequate, no special treatment of (2.2) seems indicated. Assum- 
ing the required f values are available, single-precision inversion appears sufficient. 
However, if one desires an approximation with maximum errors of a few in the 
last single-precision figure, greater care must be used. In such cases, this work sug- 
gests the following approach. Fo, A-', and B-1 should be obtained with greater 
than single precision (although full double precision is in general greater than nec- 
essary). The matrix-vector multiplications should also be carried out in greater 
than single-precision. [The variable word-length of certain computers would be ad- 
vantageous in this case.] Then the coefficients Ck,o can be obtained essentially cor- 
rect to single-precision accuracy. Since the ACko are usually small, single-precision 
calculations would probably be adequate for their computation. Although a number 
of figures are lost, especially in computing E, only a few significant figures are needed 
for the ACk,o . If further iterations are required, greater than single-precision would 
be needed for the matrix inversion and to evaluate f(xj ,), and again, single-pre- 
cision would probably be adequate for the corrections. 

In solving (2.2). Fraser and Hart replace the basis {Xk} by Tk(x) to improve con- 
ditioning. This method does not appear helpful, as the coefficients in the Chebyshev 
expansion decrease more rapidly than those of the power series, so that one expects 
more cancellation in their computation. These small coefficients are then multiplied 
by certain large constants (or linear combinations taken) to obtain the series co- 
efficients Ck . (Of course, one can use an algorithm for calculating f directly from the 
Chebyshev coefficients, but such methods ordinarily require more computation time 
than evaluation of the power series.) 

If f(x) is not differentiable, or if it is not convenient to evaluate the exact deriva- 
tives, one could instead obtain E and E numerically. This can be done by passing a 
parabola through E(xji) and two nearby points to obtain the new set {xji+1l. 

In summary, it appears that these techniques can be incorporated into a general- 
purpose program, which, given n and some method for obtaining f(x) to needed ac- 
curacy, can automatically and efficiently obtain P.*. 
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