The Chebyshev Polynomial of Best Approxi-
mation to a Given Function on an Interval

By O. Shisha

1. Let n be a positive integer, and let P, denote the set of all polynomials
> *oax’, a; real. It is known that for every real, finite set C containing at least
n -+ 1 points and for every real function f defined on C there exists a unique q € P,
such that, for every p € P, ,

(1) max | f(z) — q(2)| = max | /(=) — p(2)|.

Furthermore, the determination of this ¢ can be carried out by known methods in-
volving arithmetic operations only, and one can even give at the outset an upper
bound (perhaps large) for the number of the arithmetic operations necessary. For
instance, the determination of ¢ can be viewed as a linear programming problem.

2. Let f be a real function defined and continuous on [0, 1]. Consider the problem
of determining the (unique) # € P, such that foreveryp € P, ,

(2) onslza;{l [f(z) — p(x)] = o??sxl [ f(x) — p(x)].

It has been shown [1] that given a positive g, there is a finite subset C of [0, 1] (con-
taining at least n 4+ 1 points) such that the ¢ € P, satisfying (1) for every p € P,
is within less than 5 from @ throughout [0, 1], i.e.,

max [ p(z) — q(z)] < .

3. Our purpose is to give such a C in a completely closed form, assuming that f
satisfies a Lipschitz condition (Theorem 2), or has a continuous (n + 1)st derivative
(Thereom 1). We make use of de la Vallée Poussin’s technique [1], but employ also
some other results.

4. TueoreM 1. Let n (=1) be an integer, f a real function such that f" is con-
tinuous at each point of [0, 1]. Let Suy2 be an arbitrary (n + 2)-point subset of [0, 1],
p = min max |f(z) — p(z)|,

PEP, T€8nts
and suppose that py (for which there is an explict formula, see Remark 1 below) vs posi-
tive. Let p, V, uy and M be numbers such that throughout [0, 11, | f(2)| < u, | f(2)| £ w1,
| " (2)| £ M and 3[maxo<s<i f(x) — ming<.<i f(z)] < V. Let
n—1
¢ = [M/{p(n + 1)1}]"(n!)“11=10 1 — {20, v(n + 1)1/M},

n

U= (n+2) [IJI u!]—l [M/{4p,(n + 1)1}](”;1)
(i e - o) T
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V and M are positive since py > 0. Also, ¢ is positive as shown below. Let 1 be an arbi-
trary positive number. Let e be a positive number such that eV[1 + {U/(1 + €)}] < n/c
(for instance, let € be n {cV (1 + U)}™"). Let ¢ = [1 + cos (kx/n)}/2 (k = 0, 1,

-, m). Let C be an arbitrary finite subset of [0, 1] containing {co, ¢1, -+ , ¢cx} and
such that the maximal distance d between two consecutive points of C is smaller or equal to
pie/ (w1 + 4un®). Let P, q be respectively, the elements of P, such that

p = max [f(x) — p(x)| = ;glpn ax | f(z) — p(x) |,
max |f(z) — q(@)| = ggpn max [f(z) — p(x)|.

Then mazo<s<1 | P(x) — g(z)| < 7.
REMARK 1. If Sn+2 — {yo S YL, yn+l}’ with Yo < Y1 < Ynyl then [1]

n¥l nt+l
(3) ;0 (-l)vaf(yv) ;0 Gv;
where Gy = H0§a<ﬂ§n+];a;év,ﬁ;év°(yﬂ - ya) (V = O; 1; MR (7 + 1)

In particular, ify, = v/(n + 1) (» = 0,1, --- ;,n + 1), then from (3) one easily
obtains
n+l

()%

=0

(=0 (") g6/t 1),

REMARK 2. In connection with the definition of C we note that, as is easily seen,
the largest distance between two consecutive ¢’s is sin [x/(2n)] if n is odd, and is
{sin (n — 1)x/(2n)]} sin [#/(2n)] if n is even.

5. In the proof of Theorem 1 we shall use the following
LeMMA. Let 0 S 2o < 21 -+ <o £ 1 (n 2 1), and let

(4) xv—xy—l>8>0 (V=1,2,"',n).
Let j be an integer,0 = j < n. Letx € [0, 1]. Then

(5) I e —ol/lz -] < [I;I) (1- u«s)]/[j!(n — )

v=0,v5£j

Proof of the Lemma. (4) clearly implies that

n

lzj — @ | >jl(n—j)!&".

v=0,v5#£j

Therefore, to prove (5) it suffices to show that

n—1

(6) ﬁ¢W44ggu_m.

v=0,v5£]

If 2 2 @, then [[ropsi|2 — 2| £ J]io0swi (1 — 8). Similarly, (6) holds if
T = & . Assume now zo < ¢ < z, . We shall prove

n n—1

(7 H.Ix—x,|<I=IO(1—u6).

v=0,v5£]
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(a) Suppose 3 <z < l.Letr (1 = r < n) be such that r,_; < z < z,. Then
evidently (r — 1) <2 <1— (n—r)s. Fork=r— 1,7, cee,n— 1, let

[Hx +G4+1- r)a][ n_, (1 — v —x)].
v=0 v=k+1—r
Ifr —1<k<n—1,then

/o =[x+ (k+2—7)8)/[1l — (k+1—17r)s —a] > 1.
Consequently, we always have a,_; < a,_; . Now

[ te -tz [ -w][Ta-s-0]/1s-

v=0,v5%£] =0

—ar-l/lx_ﬂ /| — |
where £isj6if j < r — 1,andis 1 — (n — 7)6ifj = 7. In the first case

n—1

an—x/lw—£|=[ I x+<»+1—r>a]<1—<n—r>a—x>

y=0,v5£r—j—1

<[ anl 1—(n—1—v)8:|(1—(n—1)8)§ﬁ(1—v3)

y=0,v5r—j—1 v=0

(an “empty”” product means 1), which proves (7). In the second case also,

Gn/|z — E| = [’Em+(u+ 1 —r)a:l(l —(n—r8—2)/01—(n—7s—2)

n—1 n—1
s[Iz+G+1=r8 <[ Q1 — ).
v=0 y=0
(b) Suppose0<x<% Let z,” = 1—2,,(»=0,1,---,7n). Then0 =<
7

<z <- <xn'<1x.,—xy_1>6>0(u—12 .,n)Nowl—xn<x
<l—xandsom <1—z<uz) 2 <1—x<1 Thus, [T5=0.si | ¢ — 2|
= Hv—owén—flx Tny | = HV~0v#n——1|1 "‘x'—xv | < I_Ix?——o1 (1 — »5).

6. Proof of Theorem 1. Let o, 1, -+, Tay1 be points of [0, 1] such that
0=x <z -+ <2Zpya = landsuch thatforj =0,1,--- ,n+1,

= | f(x;) — ﬁ(xf)l = min max If(xs) - p(xi)l'

PEP, 0Zj<nt
Their existence is well-known [1]. By another well-known theorem [1]*
(8) o —ma>2(n+ D)/M 2 20(n+ 1)YM  (b=1,2 - ,n+ 1),

and so ¢ > 0. Consider some arbitrary x . Let u, v be consecutive points of €' such
that v < zx < v. Then

| f() — q(@)] = [f(ze) — f(w)| + | glan) — q(w)| + | f(u) — q(u)].
*In the theorem as given by the text [1] it is required that | f»+D(z)| be strictly

smaller than M throughout [0, 1]. But it is clear from the proof there, that it is sufficient to
assume merely that | f/(*+D(z)| £ M throughout [0, 1].
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Now, clearly | ()| < 2u throughout C, and a fortiori throughout {co, ¢1, - - - , ¢4}
Therefore, by a result of Duffin and Schaeffer [2] refining a previous result of A.
Markoff [3], | ¢'(x)| < 4un® throughout [0, 1], and so

[ f(@) — g(z)] < d(w + 4um®) + p < e + p = (e + 1)p.

Let
= yJnax | f(z) = q(a)l.
It is known [1] that either () — (z;) = (=1)% (G =0,1,---,n 4+ 1), or
f(z;) — p(z;) = —=(=1)p(j =0,1,---,n + 1). In the first case let u; =
(—=1)[f(z;) — qz)1/e’ (G = 0, 1, n+ 1), and in the second case let
u; = — (= 1)f(z;) — q(@))/p (G = 0 1 - ,n + 1). Then [1]
n+1
9) 1—u < [ 2 ]/[(1 + ¢)A;] where A;= 0<a<ﬁ§£‘[1;a##j (zp — Ta)

(j=0)1""yn+l)'

From (8) one easily deduces that
4> [gl (" t 1) 2ou(n + 1) /M)
Also [4]

vz () NI T - o) T

(] = 0917 cee,m+ 1)
Consequently, for every j, (D¢ A,)/A; < U and therefore, by (9),
1-— u; < EU/(I + e).

n+1)
(j=071""yn+1)-

Forj=0,1,.---,n+ 1,

Wf(zs) — q(z)} — {f(=;) — Bz}

luip' — p| = |ui(p’ — p) — p(1 — u))]
p'— o+ p(1 — u;) < epll + {U/(1 + €)}]
VIL + {U/(1 + ¢)}] = n/e.

By Lagrange’s interpolation formula and by the Lemma, for every z € [0, 1],

| D(x;) — q(z;)]

Al

IIA

| p(z) — q(z)|
= 219 — a@)] IL 1o = al/lz, - =]

v=0,v#£j

n—1

<3 /o [I=I 1 = (2000 + 1)1/M}]/[jz<n ) 2o+ 1) M) =
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7. TuEOREM 2. Let n (=1) be an integer, f a real function satisfying throughout
[0, 1], for some constant \,

[f(m) — f(1)] = N2z — 21

Let Spys, p1, u, V have the same meaning as in Theorem 1 and assume p1 > 0. Let 6 be
an arbitrary number with 0 < § < 1. Let R be such that for some polynomial Q(x) with
real coefficients we have, throughout [0, 1], | f(z) — Q(z)| < 0p1, | Q" (x)| £ R. (E=-
plicit values for such an B, depending on )\, o1, u and 0 only, are given in the proof, where
we determine also a desirable choice for 0.) Let

n—1

¢ = [R/{m(1 — 0)(n + UTI" ()™ LIO 1 — {20%(1 — 6)(n + 1)l/R},

n —1 n+1
U=(n+2) [II u!] B/ t4m(1 — 0)(n + D11

[T e o T

V and R are positive since py > 0. Also, ¢ is positive as shown below. Let n be an arbi-

trary positive number. Let e and ¢y , €1, -+ , ¢, be defined as in Theorem 1, and let C be

an arbitrary finite subset of [0, 1] contammg {co, -+, o} and such that the maximal

distance d between two consecutive points of C is smaller or equal to epy/ (N + 4un®).

Let p, P, q be defined as in Theorem 1. Then again maxo<z<1 | p(x) — ()| < n.

Proof. Let ¥y , &1, =+ + , Tt be as in the first sentence of the last proof. Let
po=min max |Q(z;) — p(x;)| = , nax, IQ(x]) — p*(;)| (p* € Pn).

pEP, 0<j<nt

Let x;, be such that maxo<j<ntt | f(T;) — P (x,)l | f(zn) — p*(z4)|. We have
2 | Q) — p*(@)| Z [ f(za) — p*(an)| — [ (@) — Q(z4)] = p(1 — 6), and,

by the theorem used to derive (8), we have

T, — X1 > 2P0(n —+ l)!/ max I Q<"+l)(x)|
(10) 0gz<1
=20l —0)n+1DYR (»=12--,n+1).

Soc > 0.

We shall now give explicitly two numbers, either of which can serve as an R. We
start by mentioning the following result of Favard [5] and Ahiezer and Krein [6]
which strengthens a previous result of D. Jackson. Let F' (with period 2x) map the
reals into the reals and satisfy for every real z; , z2 , | F(22) — F(21)| £ L | 22 — 71|,

L being a constant. Then for N =0,1, 2, , there exists a trigonometric poly-
nomial Ty(z) = D oo™ cos (&) + b, ® gin ¥ ‘vx) such that

Oglajg | F(z) — Tn(z)| £ Lx/{2(N + 1)}.
From this result one obtains by the method of Jackson [7] that for N = 0,1, 2, - --
there exists a py(z) = 9 o ¢, V2’, ¢, being reals, such that

max |f(z) — pu(2)] = /(4N + D)}

05z
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Let m be the smallest integer N (=0) such that Axr/{4(N + 1)} =< 6p:1, and let
Q(z) = pu(z). Then throughout [0, 1] we have |f(z) — Q(z)| < 8p1, | Q(2)]
< u + 0p; . Therefore, by a theorem of W. Markoff [8],

oz Q™ (@) = 2 (n + ba1) I:IO (m* = /(2 + 1)
< 2+ 0p)Dor/ (40P TT (20 + 1),

which gives two values for an R.

One can proceed now as in the proof of Theorem 1 (from the first sentence follow-
ing (8) on), and conclude that maxo<.<1 | #(x) — ¢(z)| < .

We finally make the following remark on the choice of 8. One naturally seeks to
take d (and therefore ¢) as large as possible. If we take ¢ = n{cV (1 + U)}™", then
we are interested in minimizing U, i.e., minimizing B/(1 — ). Suppose we take
R = 2" (u + 8p1)[Mr/(4001))""*/]]7~0 (2» + 1). Then we want to minimize
(u + 0p1)6 " %/(1 — 6), and as one easily sees, we have to choose 8 for this purpose
as the positive root of piz’® + [(2n + 3)u — (2n + D) pl2(n + 1)z — u = 0.
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