
The Number of Lattice Points in a 
k-dimensional Hypersphere* 

By W. C. Mitchell 

1. Introduction. One of the most interesting problems of analytic number theory 
involves the difference between the number of lattice points in a k-dimensional 
hypersphere and the "volume" of the hypersphere. Define the set Lk(x) as follows: 

(1) Lk() = {(J I *J2 Jk) ?J2 <x} 

where the Ji are integers. Let Ak(x) be the number of distinct points in Lk (X). 

Thus Ak (X) is the number of lattice points in a k-dimensional hypersphere of radius 
x/2 . Define Vk(x) as the "volume" of a k-dimensional hypersphere of radius xl2. 

Vk/2 k/2 7[k/21 xk/2 

(2) V 

(2) (~~~~~2 ) 2 (2-1 1o 2) 

where [z] is the integer part of z. 
The problem of primary interest is to find the Greatest Lower Bound Ok of the 

set of values 0 for which 

(3) Pk(X) Ak(X) - Vk(X) = 0 (X). 

Walfisz [1] gives the following general results: 

Pk(X) = 0(X(kl)12), Pk(X) = (Xkl2-1 

(4) P4(X) = 0(X log2X) = 0(Xl+e) E > 0, 

Pk(x) = 0(xk21), k > 5. 

Thus for k ? 4 Ok = k/2 - 1. 
The value of k which has received the greatest attention is k = 2, the number 

of lattice points in a circle. Wilton [2] gives an account of the early work in this 
problem. Since that time several results have been published establishing new 
values of 0 for which P2 (x) = 0(x0). One of the most recent is Chen Jing-ren's 
proof [3] that P2(x) = 0(x'2137). Hardy (see [2]) has shown that P2(x) = (X14 

It is a common conjecture that P2 (x) = 0(x14?E), E > 0, or 02 =4 

There is less known for k = 3. From (4) we have 2 < 03 < 1. Fraser and Gotlieb 
[4] conjectured on the basis of numerical evidence that .5 ? 03 ? .7. More recently 
Chen Jing-ren [5] has shown that 2 _ 03 < 3 

With the advent of high speed computers it has become possible to evaluate 
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Pk(X) for "large" x in order to see if the calculated results are consistent with 
theoretical results or if it is reasonable to make any. new conjectures concerning ok . 

There have been at least three previous papers on this subject. Fraser and Gotlieb 
[41 calculated isolated values of P2(x) and P3(x) for x112 < 2000 on an IBM 650. 
However their conclusions differ with the present paper for 02. Harry Mitchell [6] 
calculated P2 (x) for xl2 < 200,000 on an IBM 7090, but the results for x1/2 > 3000 
are incorrect, as pointed out by Keller and Swenson [7]. Keller and Swenson deter- 
mined P2 (x) for many values of xl/2 < 260,000 on an IBM 7090 and their method 
of interpretation leads them to suggest that 02 < .3. This seems unlikely from the 
results of the present method of interpretation. 

The problem of establishing that Ek(x) = O(x6) is equivalent to finding a 
sequence ((Xi, Yi))t'=i such that 

(5) Pk(x) I _ Yi + O(x0) for x _ Xi+, and lim sup Y' < m. 

Since Lk(x) is composed only of k-tuples of integers, Ak(x) is piecewise con- 
stant over [n, n + 1), where n is an integer. Thus for x E [n, n + 1) 

(6) Lim Pk(n + #3) < Pk(x) _ Pk(n). 

But 

Lim Pk(n + 3) = Ak(n) - Vk(n + 1) 

(7) = Pk(n) - (Vk(n + 1) - Vk(n)) 

= P (n) + 0 (xk21 ) 

However, by (4), Ok _ k/2 - 1. Therefore the sequence of "extreme" points 
(Ni, | Pk(Ni) j), defined such that I Pk(n) I < I Pk(NO) I for n < Ni+1, satisfies 
the first requirement of (5) for all 0 of interest. This sequence is uniquely deter- 
mined, given an initial element, and Ni+1 is the first integer for which I Pk (Ni) I < 
I Pk(Ni+1) I. 

For x too large to calculate Pk(x) conveniently for all integers, approximate 
extreme points can be chosen in the same manner as the true extreme points but 
from a more restricted set. These approximate extreme points are not necessarily 
a subset of the true extreme points. This later method, used by both Fraser and 
Gotlieb and Keller and Swenson (in a different context), is not so concise as the 
former but allows one to consider a larger range of x. 

The present calculations on an IBM 7094 include Pk (X) for k = 2, 3, 4, 5, 6 and 
all integer x ? 250,000 (x112 < 500); some 250 isolated values of P2 (X) for x1/2 < 

10,000,000; and about 20 values of P3(x) for xl/2 < 9000. The results of this work 
show that the calculated values follow the theoretical limits quite closely. The 
results for k = 2 fail to indicate that 02 is less than Chen Jing-ren's bound of 
12/37 -.324. For k = 3 the most reasonable conclusion is .5 ? 03 < .6. 

Efficient algorithms for various combinations of k and x are presented in Sec- 
tion 2. Section 3 is composed of computing methods and Section 4 contains con- 
clusions. 
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2. Counting Algorithms. The most efficient method of evaluating Ak(x) depends 
on the range of k and x and upon whether isolated values (for approximate extreme 
points) or a large number of consecutive values (for true extreme points) is desired. 
The following formula is similar to one given by Walfisz [1]. 

Al(0) = 1, 

Al(x) = Al(x - 1) + 26(x) 

where 

a (X) =1 
for x a perfect square, 

IO otherwise, 

[VW] 
Ak(X) = Ak1(X) + 2ZAkl(X - i)X 

i=1 

Formula (8) provides the basic method of calculating Ak (X). For large values 

of x, some terms of the above summation may be larger than the fixed-point single- 
word capacity of the computer (236 - 1 on the IBM 7094). This difficulty can 
often be remedied by defining Rk(x) as the number of points (J1, J2, ***, Jk) 

such that 
k 

(9) E Ji2 = ~~E X. (9) ZJ~2=x. 

It is evident that 

Rk(x) = JAk(X) - Ak(X 1), x an integer, 
O. otherwise, 

(10) [x] 

Ak(X) = E Rk(i). 
i=O 

Also 

R1(O) = 1, 

(11 ) RR (x) =26(x) 

Rk(x) = R-1 (x) + 2 E Rkl (x -i2). 

The similarities of (8) and (11) are noticeable. By changing initial values the same 
procedure may be used for either Ak(X) or Rk(X). 

The next formula makes use of the symmetries involved in the set Lk(x) re- 

sulting from permutations and negatives of ordered k-tuples. Define 

(12) Lk (X) = {(J1, J2, ,Jk) E Lk (X) < J1 < J2 < *.. < Jk} 

and let M (J1, J2, * , Jk) be the number of distinct permutations and negations 
of J1, J2, ,Jk. Then we have 

2k-(0) k 

(13) M(J1, J2, Jk) = 
_ 

' 
_ 

n(p 
P-0 



NUMBER OF LATTICE POINTS IN k-DIMENSIONAL HYPERSPHERE 303 

where n(p) is the number of i for which Ji = p. Thus, if Ym = (J1, J2 , Jm), 

(14) Ak(X) = r 1 = E M(Yk) 
YkE Lk(X) YkE Lk (X) 

By rearranging (12) and (14) it follows that 

(15) Ak(X) = 1 + E Z, M(Yk-1, Jk) 
Jk=1 Yk-jELk-1(X-Jk );Jk*1-Jk 

Now, if Jk-l < Jk, then M(J1, J2, , Jk) = 2kM(J1, J2 . * Jk-l)., Simi- 
larly, if Jk-i < Jki,+l = = Jk, then 

M(J1) J2 *** Jk) = 2i ()M(Jl) J2 )** Jk-i)- 

Thus we have 
[Vx5- ki'15 

(16) Ak(x) = 1 + E Z 2i (k) Z M(Yk-i). 
Jkl_- i=l Yk-iE Lk-i (X-jjk2 );Jk-i<Jk 

Now define 

Sm(Z, J) = Z M(Ym) 
YmE Lm' (Z);JJm<J 

Thus 
k/]k 

(17) Ak(x) = 1 + Z Z 2i () Sk-i(x _ ij2 J) 
.J=i i=1 \It/ 

Sm (Z, J) can be defined recursively as follows: 
J-1 m / 

S (Z) J ) = 1 + E 2i(?) Sm-i(Z iJm2, Jm), 

(18) 
(~1) z 0 

So(Z, J) = 

It is convenient to note that 

Sk(x, ??) = Ak(X), 

(1 9) Sk ( oc, J) = (2J - 1)k. 

Formula (18) used with (19) is the basic method for taking advantage of sym- 
metries among the points of Lk (x). By algebraic reduction the following general 
formula can be established: 

m-1 MTNi /\ 

(20) Sm(Z, J) = (2N + 1)"n + E Y 2' () Sm-i(Z - iJm2, Jm) 

where N = [ Z/m] and A1INM = min ([ Z/i], J - 1). For complete generality 
Ak(X) must be defined as in (19). For k=2 this simplifies to 

(21) A2(x) = 1 + 4[i] + 4[Vx/2]2 +8 Z [ X .J2]. Tif=oruawskont as].+1 

This formula was known to Gauss. 
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Formula (20) is of course ideally suited to programming for an algorithmic com- 
piler; however, it can easily and efficiently be programmed in a machine-oriented 
language. Consequently it was coded in SCATRE for the 7094 and used for isolated 
values of Ak (x) for large x. 

One extension of (21) should be very valuable for computing isolated values 
of A2(x). It is possible, for certain x, to compute A2 (x) for all u subject to 

I u I < 2x/- x1/4 in nearly the same time necessary to compute A2 (x + u) alone. 
For x = 1014, the largest argument used in this work, this would have made available 
over 17,000 results in about twice the time required for the single value. Needless 
to say, this is a significant improvement. Unfortunately, this method was not 
known when the computations were done for this paper, but the method has been 
used for moderate x (x 10,000). 

Define the following: 

x = r2 + 2r = (r + 1)2-1, ran integer, 

U <2V, 
(22) 

U<2N2r 

-U + 2 < u _ U. 

W = [(22 -U 2 u ], where J is used in the context of (21). 

The following theorem may be established by simple algebra: 

___+__1, u > (W + 1)2- (x _ 

(23) + xU - J2]= W-1 u<W2 _(X j2)) 
t W. otherwise. 

Thus, if the remainder of the integer square root routine is available, it is easy to 
evaluate [V/x + u - J2] in the process of applying (21). 

The true value of this method lies in computing A2 (x + U) for all suitable u 
simultaneously. Define 

Q(0) = 0, 

q(u) =0, -U + 2 ? u < U. 

As J runs from [Nvxi72] + 1 to [V/x] = r, as in (21), do the following: 

Q(0) = q(0) + [v/x - J2] = Q(0) + W. 

(24) q(v) = q(v) + 1, where v = (W + 1)2- (x j2), 

q(v) = q(v)-1, where v =W2 (x J2) -1. 

Then, for u > 0, 
u [v(x+u) /2 _ 

Q(u) =Q(0) + q(v) + [u-1]- [V+u-J2], 

(25) 

Q(-u) = Q(0) + E q(-v) + E [V/x - u - J2]. 
V=l '=[\/xu2]+l 

And then, for all u, 

(26) A2(x + u) = 1 + 4[ x + u] + 4[v"(x + u)/2]2 + 8Q(u). 



NUMBER OF LATTICE POINTS IN k-DIMENSIONAL HYPERSPHERE 305 

3. Computer Methods and Numerical Results. The time-consuming part of 
computing Ak(x) by any of the methods mentioned in this paper is evaluating 
[+/x]. However, from the logical order of summation successive arguments often 
happen to be close together. Furthermore, while most square root routines are 
floating-point, exact fixed-point results are necessary for this work. Thus the effi- 
ciency of the square root routine may be improved by using fixed-point operations 
and by using the previous result as a first approximation for the current argument. 
Using this and the identity 

(N - 1)2 = N2 ? 2N + 1, 

Ak(x) may be calculated on a binary machine with no multiplications and no 
numbers larger than xl/2 except the sum. This procedure was developed inde- 
pendently by Keller and Swenson [7] and the present author. It is particularly 
useful for employing (26). Keller and Swenson present the necessary algorithm 
and a basic derivation of the process. 

For the current paper two methods were used for determining Ak (x). For cal- 
culating isolated values, (20) and the above method were used. Special square root 
routines were used throughout. The time to compute Ak(X) was on the order of 

(k-l) /2 

T(k, x)ax 
k! 

When a large quantity of consecutive values was desired, (8) and (11) were 
used. An IBM 1301 Disc File was available for additional storage. This Disc File 
is particularly desirable in allowing the use of one portion of core-storage for com- 
putation while data is moved between the Disc File and another portion of core. 
For the present problem this effectively created a million words of core-storage. 
The time required to compute Ak(X) for 2 ? k ? K and all integer x ? X is 

T(K, X)a(k -1 )X312. 

Using this method 3' hours were required for T(6, 250000). Formula (11) was used 
with the assumption that Rk (X) < 236. This assumption was violated near 
R6(40,000). 

Integer arithmetic was used exclusively for Ak (X) in all programs, and it is 
expected that all values are correct. Complete agreement was noted for all values 
published in [7]. Similar agreement existed with [4] except for A3 (18002), the largest 
argument published in that paper. This value was calculated twice for this paper, 
each calculation requiring 3 minutes. 

4. Conclusions. Table 1 gives the first fifty true extreme points for k = 2, 3. 
The number of extreme points for x < 250,000 (xl/2 < 500) is 

k number of 
extreme points 

2 76 
(27) 3 80 

4 170 
5 434 
6 474 (x < 40,000). 
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TABLE 1 

First 50 extreme points for k = 2, 3 

Xi A2(Xi) P2(XX) Xi A3(Xi) P3(Xi) 

1 ~~~5 2 1 7 3 
2 9 3 2 19 7 
5 21 5 5 57 10 

10 37 6 6 81 19 
20 69 6 14 251 32 
24 69 - 6 21 437 34 
26 89 7 29 691 37 
41 137 8 30 739 51 
53 177 10 54 1743 81 

130 421 13 90 3695 119 
149 481 13 134 6619 122 
205 657 13 155 8217 134 
234 749 14 174 9771 157 
287 885 -17 230 14771 160 
340 1085 17 234 15155 161 
410 1305 17 251 16831 174 
425 1353 18 270 18805 221 
480 1489 -19 342 26745 252 
586 1861 20 374 30551 254 
840 2617 -22 461 41755 294 
850 2693 23 494 46297 305 
986 3125 27 550 54339 309 

1680 5249 -29 666 72359 364 
1843 5761 -29 750 86407 371 
2260 7129 29 810 96969 405 
2591 8109 -31 990 131059 580 
3023 9465 -32 1890 344859 682 
3024 9465 -35 2070 395231 734 
3400 10717 36 2486 519963 756 
3959 12401 -37 2757 607141 763 
3960 12401 -40 2966 677397 776 
5182 16237 -43 3150 741509 959 
5183 16237 -46 3566 893019 1028 
7920 24833 -48 3630 917217 1105 
9796 30725 -50 4554 1288415 1120 

11233 35237 -53 4829 1406811 1170 
14883 46701 - 55 5670 1789599 1205 
15119 47441 -57 5750 1827927 1550 
15120 47441 -60 8154 3085785 1570 
19593 61493 -60 8382 3216051 1576 
21600 67797 -61 8774 3444439 1851 
21603 67805 -63 8910 3524869 1930 
21604 67805 -66 10350 4412643 2028 
22177 69605 -66 10710 4645127 2404 
28559 89653 - 68 15734 8269399 2411 
28560 89653 -71 15750 8282167 2565 
31679 99449 -74 16302 8721339 2675 
31680 99449 -77 17550 9741669 2895 
38015 119349 -79 23310 14910309 2905 
38016 119349 -82 23894 15474065 2940 
38017 119349 -85 24174 15746999 3133 
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This reflects the increasing values of Ok and perhaps more "regularity" for the 
higher values of k. 

The problem of showing 

Lim sup N ti) I < +00 
j--j,0 N 

is equivalent to showing 

Lim sup (log I Pk(Ni) I-0 log Nj) < + 00. 

Graphically this corresponds to finding a straight line with slope 0 which 
majorizes the points (log Ni , log I Pk (Ni) 1). Figure 1 shows the sequence of ex- 
treme points for x < 250,000. Only a sample of the points for k = 5, 6 are shown. 

0~~~~~~8 2 

7 

8~~~~~~ ~~~~~~~ I 1._6 

LOG X 

FIGURE 1. Extreme points for x S 250,000 and k =2, 3, 4, 5, 6. 
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TABLE 2 

xl/2 A2(x) P2(x) xl/2 A3(x) P3(x) 

1000000 3141592649625 -3965 1000 4188781437 -8768 
1500000 7068583465945 -4632 1200 7238202017 -27457 
2000000 12566370610285 -4074 1400 11494026189 - 14133 
2500000 19634954076697 -8239 1600 17157266213 - 18466 
3000000 28274333873841 -8467 1800 24428982249 -42225 
3500000 38484509999277 - 7198 2000 33510290993 -30645 
4000000 50265482451357 -6080 2500 65449818205 -28745 
4500000 63617251226505 -8688 3000 113097275709 -59820 
5000000 78539816333093 -6652 3500 179594325465 -54565 
5500000 95033177762429 -8662 4000 268082474393 -98713 
6000000 113097335520185 -9048 4500 381703453381 -54030 
6500000 132732289606241 -7928 5000 523598707861 -67737 
7000000 153938040012805 -13095 5500 696909887157 -83164 
7500000 176714586754401 - 10025 6000 904778525345 - 158889 
8000000 201061929820913 -8834 6500 1150346427953 -82036 
8500000 226980069212125 -9738 7000 1436754948853 -91389 
9000000 254469004930845 -9928 7500 1767145772565 -95079 
9500000 283528736973257 -13222 8000 2144660422929 - 161922 
9600000 289529178944573 - 10262 8500 2572440705977 -78537 
9700000 295592452772029 -4235 9000 3053627854381 -204908 
9800000 301718558438929 -11835 
9900000 307907495964805 -13531 

10000000 314159265350589 -8390 

The lines drawn represent the minimum slopes which appear to parallel the extreme 
points. In addition, for k = 2, 3, 4 the theoretical minima for Ok (see (4)) are shown. 
If Ok is estimated from these points, the results are 

02 .324 = 12/37, 

03 .60 = 3/5, 

(28) 04 1.06, 
0. 1.52, 

06 2.00. 

The accuracy of visual estimation limits this method to a precision of at most 
?4.01. For instance in Figure 1, for k = 2 a line with slope 12/37 would be indis- 
tinguishable from one with slope 1/3. The way which the results for k = 4, 5, 6 
approach the known values suggests that this method is valuable for the range 
of x used. 

In addition to the true extreme points for x1/2 < 500 a number of approximate 
extreme points were calculated from isolated values of P2(x) and P3 (x). Some of 
these are shown in Table 2. In Figure 2, the values of P2(x) for x1/2 < 10,000,000 
are shown with the true extreme points for xl/2 < 500. If only the approximate 
extreme points are considered, one is led to agree with Fraser and Gotlieb [4] that 
"02 = 4 is not inconsistent with observed results." But when the distribution of 
approximate extreme points is considered independently of sampling distribution, 
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(9 
0 

LOG X 

FIGuRE 2. Distribution of true and approximate extreme points for k = 2. 

there is no reason to believe that the true extreme points do not continue near 
slope 12/37 for xl/2 > 500. Thus it is not reasonable to conjecture from these results 
that 02 is appreciably less than Chen Jing-ren's bound of 12/37. A logical conjecture 
based upon these results is 03 ? .3. 

The approximate extreme points for Jo = 3 suggest that .5 ? 03 ? .6, but there 
are too few points from which to extrapolate with assurance. For instance half of 
the isolated values qualify as approximate extreme points. The time required to 
calculate more values of P3 (x) would be prohibitive. 

An additional matter of interest is the sign of Pk (x ), Keller and Swenson reported 
that, while most of the values of P2 (x) for integer values of xl/2 ? 260,000 were 
negative, the sign distribution for noninteger xl/ 'was abu uniform or perhaps 
even slightly biased in favor of positive values." In this experiment all of the true 
extreme values for 3400 < x ? 250,000 and all of the isolated values for integer 

1/2 _ 000 000 were 0 

x1/ < 10,0000wr negative. 
For k = 3, 95%O of the true extreme values were positive while the larger isolated 

values were negative. The four negative extreme values were among the larger ex- 
treme points. 

For k = 4, 5, 6 all of the true extreme values were positive. 
Another question is whether or not noninteger values of x would provide different 

extreme points than the integer values used thus far. From (6) we need only con- 
sider Limjso1-- Pk (n + f3). This question is of little interest for Jo - 2 because 
P2 (n + ,3) = P2 (n) - r. However for Jo = 3, for x < 1000, the P3 (n + fi) values 
were of the same magnitude as the P3 (n) values. For the larger values of Jo and 
necessarily smaller x, in accordance with the greater density of extreme points as 
in (27), there is an alternation of extreme points for small x and a random assort- 
ment for larger x. 
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