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The present paper contains in Table 1 a somewhat shortened version of that 
summary, and lists all values of I k I for which six or more solutions were found. 

We summarize some of our results as follows: 
(1) For positive k ? 100, no solution could be appended to the Table in [3]. 
(2) For negative k ? -9999, the last solution found was 

(1,775,104)3 - (2,365,024,826)2= -5412; 

whilst, for positive k < 9999, the last solution was 

(939,787)3 - (911,054,064)2 = 307. 

(3) In addition to solutions for I k ? < 9999, we have solutions, for y > 104 
and I k ? < 99999; there are 1221 for positive k and 799 for negative k. 

The vast majority of solutions are with y < 100 and Table 2 gives the number 
of solutions for various ranges of y. 

The fact that the number of solutions is a rapidly decreasing function of y 
suggests that for at least some k the solution set may be complete. 
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Experiments on Gram-Schmidt Orthogonalization 

By John R. Rice* 

1. Orthogonalization Procedures. In this note we present a brief resume of 
some experiments made on orthogonalization methods. We have a set 

jui I i 1, 2, ... , n} of m-vectors and wish to obtain an equivalent orthonormal set 

Ivi Ii 1, 2, ... , n} of m-vectors. We consider the following methods: 
(a) Gram-Schmidt (GS). vi = ui/11 u, 11. 

k-1 

Vk= Uk - x (V , Uk)Vj, Vk = Vkf/|| Vk ||; k = 2, , n. 
j=l 

(b) Modified Gram-Schmidt (MGS). v1 = ul/II u, 11, 

Uj'l = u- (uj, VO~V1, j =2, ... , n. 

Vk = Uk(k-1) /||Uk(k-1) 1I1 

(k) (k-i) (k-1) 
k = 2 n. 

u( = uj _ (jk Vk)Vk j k + 1, ... n 
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(c) Modified Gram-Schmidt with pivoting (MGS-Pivot). We assume that the 
vectors ui are normalized so that Il fI = 1, i = 1, 2, , n. Then, at the kth step 
uj (k-i) is chosen so that 

||uj (k- 
= max || ui(k- 

k _ i < n 

Then Vk = uj(k-l)/l uj(k-l) 11. The selection of uj(k-l) may be made efficiently by 
noting that 

k-1 

(kl1) 12 = 1 - E ' Vt) 

1=1 

and accumulating the required sum for each vector. 
(d) Reinforcement. This is the repeated application of any of the first three 

methods. 
This study was undertaken to investigate possible advantages of the pivoting. 

These turn out to be minor, but surprisingly, the Gram-Schmidt and modified 
Gram-Schmidt show distinct differences in computational behavior. This is particu- 
larly remarkable since both methods perform basically the same operations, only 
in a different sequence. Indeed, ignoring computational errors, they produce the 
same set {vi} with the same number of operations. The MGS method is more natural 
for machine computations since it economizes storage. 

2. Experiments Performed. Experiments were made with 3 classes of vectors: 
(i) randomly generated, (ii) function generated and (iii) artificially contrived. 
The classes (i) and (iii) are self-explanatory, for class (ii) the vector ui = 

(Uil, ui2, ..., Uim) is generated by Uik = f (i, k) where f (a, x) is some common 
mathematical function (e.g. Uik = tan ik 0, 0 = 7r/2m, k = 1, 2, ... , m, i = 1, 
2, ... , n). Sets of vectors from class (ii) are the most likely to occur in applica- 
tions [1] and are also likely to offer computational difficulties. 

The methods of orthogonalization were compared on two points: orthogonality 
of the vectors {Vkj and invariance of subspace defined by { Uk}. In order to compare 
the subspaces spanned by {Uk} and {Vk}, a double precision orthogonalization of the 
IUk} was performed. Then the angle between each computed {Vk} and the subspace 
spanned by {Uk} may be accurately computed. Care was taken that the double 
precision orthogonalization was, in fact, satisfactory and that the vectors obtained 
did, in fact, span the same subspace as {us}. 

All inner products were made with double precision accumulative multiplica- 
tion. The experiments were performed on an IBM 7094 with standard program- 
ming systems. 

3. A Simple Error Analysis. We outline a simple error analysis of the GS method 
which supports the experimental conclusions reported in the next section. Assume 
that, for some value k, we have (vi, vj) = $ij for i, j _ k - 1. Let 

k-1 

Uk OA + X 

where (a, va) = 0, 1 < i < k -1. Then 
k-1 

Vk = - Z (ZE #iEj)vj 
j=1 ilf 
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and 

EkI = [ ( E3i Eij) ],/ fl Vk' 11 

Note that cjj = 1 and we conclude that nonorthogonality effects are magnified by 

11 Vk' 11 in the GS method. 
If, as is usual for class (ii) vectors, becomes small then 11 Vk it becomes 

small. This, in turn, increases the c-j causing Vk to quickly become a linearly com- 
bination of the {vi I i = 1, 2, , k - 1}. That is to say that Ek,k-1 quickly ap- 
proaches 1. 

On the other hand, the MGS method always has Ek,k1-= 0 within machine 
accuracy. Indeed 

(U (k), Vk) = (Uj(kl1) Vk) - (Uj (k), Vk) (Vk , Vk) = 0. 

4. Conclusions. It is not feasible to report in detail an analysis of the compu- 
tational experiments. Rather, we summarize the experiments by a series of (experi- 
mental) conclusions and remarks. 

(A) Randomly generated sets are unlikely to cause difficulty for any of the 
methods. Eighty sets of vectors ranging from n = 5, m = 5 to n = 40, m = 80 
were tested. Only one set (for n = 40, m = 40) gave any method any difficulty. 
For this one case the GS method produced a set {Vk} with maximum inner product 
of .00022413 compared with .0000 0568 and .0000 0522 for the MGS and MGS- 
Pivot methods, respectively. 

(B) Function generated vectors tend to be linearly dependent. Twenty five sets 

IUk} were generated by the functions P3 (X)Xa, P3 (x)eax, P3 (x) sin ax, P3 (x) cos ax, 
P3 (x) tan ax, P3 (x) log (1+ -ax), rational functions and several combinations of 
these functions. P3 (x) is a generic symbol for a polynomial of degree 3. Most ex- 
periments were for n 20, m - 20 or 50. 

(C) For this class, (ii), the MGS method is consistently, and often substantially, 
"stronger" than GS. That is to say that MGS obtains more orthogonal vectors than 
GS, and, in fact, one reinforcement of MGS was always sufficient to obtain an 
orthonormal set {Vk} whereas GS frequently required 3 or 4 reinforcements and 
sometimes as many as 6 to obtain an orthonormal set. 

(D) The extreme linear dependence in class (ii) results in poor subspace defini- 
tion. This is reflected in the sets {Vk} obtained after reinforcement and the maximum 
angle between a Vk and the space spanned by { Uk} was usually of the order of 20?-40?. 
The MGS was usually, but not always, better than GS with regard to keeping the 
subspace invariant. 

One exception occurs for the first (but not other) application of GS where the 
subspace always remained well defined. The simple error analysis of the GS method 
shows why this is to be expected. 

(E) The experiments indicate that pivoting results in a perceptible, but small 
(even negligible), improvement, on the average, for classes (i) and (ii). 

(F) For certain artificially contrived systems the MGS-Pivot method 
resulted in a significant improvement. One such example is ul = (1, 0, . , 0), 
U2= (1,, t, . * , tn), U3 = (0 1, 0,* , 0), , UMr (0, , 0, 1, 0) for 
n > 10 and 0 < t < f4. 
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(G) A basic difference in performance between GS and MGS is that once GS 
loses orthogonality, it produces almost identical vectors thereafter. The maximum 
inner product is usually .999 etc. (and this is to be expected from the error analysis 
of 3). On the other hand, MGS continues to generate distinct, if not orthogonal, 
vectors. Thus the inner products obtained (after orthogonality is lost) normally 
range between 0.1 and 0.9. This is no doubt due to the fact that Vk is always or- 
thogonal to vkli within machine accuracy. This is suggested by the error analysis 
and confirmed by experiment. 

I wish to acknowledge the able assistance of Rex Wolf in preparing the programs 
for these experiments. 

A Matrix Reduction Problem 

By J. W. Moon and L. Moser 

1. Introduction. Let An denote an n by n matrix of O's and l's that is non- 
singular over the field of residues modulo 2. Fine and Niven [1] have shown that 
these are c.2' such matrices where 

Cn = II 1 - (- 

Let f (An) denote the minimum number of operations needed to transform An into 
the identity matrix I1.. (It may be necessary, of course, to interchange certain 
rows but we do not count this as an operation.) The object in this note is to give 
bounds for f(An) which at least determine its order of magnitude for almost all 
matrices A. . These may be of some interest in connection with the question of the 
minimal number of operations required to invert a matrix. Indeed our methods and 
results apply with only minor modifications to the case of matrices with real ele- 
ments provided that in performing arithmetic operations only a fixed number of 
significant digits is retained. 

THEOREM. There exist positive constants c1 and C2 such that 
2 2 cin 

<f(A,) < C2n 

log n log n 

for almost all matrices An; i.e. for all but a fraction which tends to zero as n tends to 
infinity. 

2. A Lower Bound for f(An). We will show that 

f(An) > X = - 
log2 n 

for almost all matrices An where e is an arbitrary positive constant. 
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