
Some Remarks on the Stefan Problem* 

BY Alan Solomon 

1. Introduction. In this discussion we examine a method, motivated by M. Rose 
[4], for the determination of the temperature distribution in a medium undergoing 
a change of phase. 

Consider a semi-infinite slab x > 0 of material which has a critical temperature 
TC > 0 at which a change of phase occurs. Let the slab be initially at a constant 
temperature V > Tc. If at the initial time, t = 0, the temperature at x = 0 is 
set at T = 0 and remains so for all time, then a phase changing process is initiated. 
Hence at a later time there is a region, 0 < x < x*, consisting of material in Phase 
"I" separated from the material in the original Phase "II" by a front x*(t) moving 
to the right (see Figure 1). Let H be the latent heat of the material, which is lost 
during the change from Phase II into Phase I. We will for simplicity suppose that 
the density p of the material is the same for each phase. Let cl, K1 and C2, K2 be the 
specific heat and the conductivity of Phase I material and Phase II material 
respectively, and set Ki = Ki/(cip), i = 1, 2. 

The problem of finding the temperature distribution in this situation was solved 
explicitly by F. Neumann (see [1, Chapter XI]). 

We wish to consider a related problem for a function which up to an additive 
constant can be identified with the specific internal energy, and show that the above 
problem is equivalent to this related one, by obtaining from it, Neumann's explicit 
solution. 

Let T(x, t) be the temperature of the slab at time t and position x, and define 
T to be a function of the "internal energy" e by the relation 

pe H + TC , e < H, 
ICl 

(1) ~~~T(e) T= T? H < e_< 2H, 

TC + e-H e > 2H. 
C2 

(See Figure 2.) For any small -, a > 0 define the function K(e) by: 

(Kl, for e < H 
q1(e), H < e < H +e, 

(2) K(e) = 6, H + e ? e < 2H-E, 
Lq2(e), 2H-e < e < 2H, 
tK2, 2H < e 

where q$ , 42 are any smooth monotonic functions so defined that K(e) together with 
its first derivative K'(e), is continuous (see Figure 3). In Section 2 we find a solution 
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Figure 1. Figure 2. T=T(e) 

e(x, t) of the equation 

(3a) et = (K(e)ex)x, for t, x > 0, 

such that 

(3b) e(x, 0) = e2, e(O, t) = el, 

with 

(3c) e1 = H-cciT, e2 = 2H + C2(V- Tc) 

and show that for e -> 0, a -* 0, it yields Neumann's solution. This proof justifies 
some confidence in the numerical method based on the specific interval energy 
formulation proposed by Rose [4] for solving the Stefan problem. In Section 4, we 
investigate a numerical example which reveals certain unanswered questions related 
to the accuracy of the numerical scheme as a function of the parameters introduced 
in Section 2 to study the specific internal energy formulation. The scheme pro- 
posed by Rose [4] corresponds to a special choice of these parameters. 

The author wishes to thank Professor E. Isaacson for introducing him to this 
subject, and for many helpful discussions about it. 

2. Solution of the Problem. Using Boltzmann's transformation z = xl(4t) 
problem (3a, b) is transformed into the following boundary value problem for a 
function E(z) = e(x, t). 

Find E(z) such that: 

(4a) d (K(E) d + 2z (E) (4a) ~~~ 
~~dz dTz/ dz 

(4b) E(O) = el, E( oo) =e2, 

where by (3c), 

(4c) ei < H < 2H < e2 

This problem is dealt with in the following manner. 
For any number A > 0 there exists a unique function E(z) satisfying (4a) 

and the initial conditions 

(5) E(O) = ei, KlE'(0) = A, 
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Figure3. K=K(e) 

or equivalently, the integral equation 

(6) E(z) = e1 + A exp ds 

(see [2]), and defined for all values of z. Moreover, since K(E(S)) > a > 0 for all 
s, the integral on the right-hand side of (6) converges as z tends to infinity, to a 
well defined limit; thus E(z) converges as well to a definite limit, which we denote 
byq$. 

Conversely, for any q > el we can find a constant A > 0 and thus a correspond- 
ing E(z) for which 

(7) 4' = el + A JK(E(S)) {f(E(t)) dt} ds; 

for if K = max (Kl, K2), with any A > 0, 

4f8exp dt} 
K(E(s)) - )/ 

and since E depends continuously on A, as A ranges through all positive values, 
the integral in (8) will as well. 

Now for a given q, both A and E(z) depend on the choice of e in (2). From (6), 
E'(z) > 0 for all z, so that, if q > 2H there are points ZH+e > ZH , and Z2H > Z2H-e 

for which 

(9) E(ZH) = H, E(zH+e) = H + 6, E(Z2Hf-) = 2H - E, E(Z2H) = 2H. 

From (7), (8), 

( 10) 0 < 26(4 - el)/(rK*) 112 < A < 2K*() -e /(r)1/2 

and A is bounded independently of e. Since by (6), (9), and (2), 

(11) H = (A/KI) ] exp (-S2/K1) ds + el = el + (Alr1/2/(4Kl)1/2) Erf (ZH/K1112) 

with Erf the error function, while by (4c), (10), 
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Erf ( HIK1'2 )> ( OK J) 
" 

11 - el)} > o 

K*0- ei) 

we find that ZH is bounded from below by a positive constant independent of e. 
On the other hand, from (6), (7), (1Oa) 

co exprrs2t dt 0 < (H + c-) = A exp dtds 
(12) JZN+6 E(s((-)) { K(E (t) 

< 2K*3((w-el) J exp (-S'/K2) ds 

so that ZH+e (and thus ZH) is bounded from above by a constant independent of e. 
Now by (6), 

rzH+f 1 f __2t_dt_ 
e = A J (E(s)) exp (E(t)) 

(13) A zH+ exp -ZH 2t dt d 

> (A/K*) exp (-ZH /KJ + ZH/5 - 4Hte/6)(zH+- ZH), 

so that as e -> 0, ZH+e - ZH -O 0. Similarly, we can easily show that Z2H-, X Z2H are 
bounded by positive constants independent of E, and Z2H -Z-e -0. Let now e - > 0 
and 4 > 2H be fixed. Then for each E we can find a value A and a functionl E(z) 
obeying (6). Choose a sequence En -* 0 such that the corresponding sequences of 
points zH, ZH+E , and Z2H-E , Z2H converge to values denoted by ZH , Z2H, while the 
A-values converge to a value A. The corresponding functions E(z) are uniformly 
bounded (by q), and equicontinuous in every z interval, since the derivatives: 

( z 2t dt 
E( z ) 

A exp f 
K(E(t) 2K*(4 - el) 

K(E(z)) 7 /3/ 

are uniformly bounded independently of E. Thus by the Arzela-Ascoli lemma, we 
can extract a uniformly convergent subsequence converging to a continuous func- 
tion E(z), satisfying Eq. (6), where K(E) is now a piecewise constant function: 

rKl E<H 

(14) K(E) = t6 H < E < 2H 
CK2, 2H <E 

and E(oo) = 0. 
We now claim that for a given q > 2H there is only one such function E(z) 

determined by a unique A, which is equal to / at z = oo. 
To see this we need only to show that 4 increases monotonically as A increases, 

for any solution of (6). But as A increases, (11) implies that ZH decreases, while by 
(6), (14), 

A rZ2,f 0 2t dt 
H =5) +fJZH exP{l JK(E(t))} 

(15) / ex (Zed 

= Aexp H2 I! - 'ij exp (_S/) ds. 
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Letting t = s -ZH in this integral, we find that 

A Z2H-ZH 

(15a) H = e ZH2 I exp (-t2/ - 2zHt/) dt, 

so that as A increases, the integral in (15a) must decrease; since ZH decreases with 
increasing A, Z2H- ZH must decrease and so Z2H must decrease as well. However, by 
(6), (14), 

A 2 ti i (1 1\ F00 
(16) -2H=- exp {ZH ---)- Z2H - - J exp (-S2/K2) ds 

K2 Kl a K2 Z2H 

A exp 4-(Z2H + ZH)(Z2H ZH) - 1 

16a) ~~K2 Kl\1, 

( 16a) K2.*exp {-Z2H (---)}* exp (-S /K2) ds; 
Kl K2 2H 

supposing without loss of generality that K1 < K2, we see that as A increases, 4 will 
also increase. 

Thus for each 4 we can find a unique A and a solution E(z) of (6), (14). Choose 
that solution E(z) for which q - E( oo ) = e2 . E(z) is continuous, and on the 
intervals [0, ZHI, [ZH, Z2H], [Z2H, oo J has a derivative 

(17) E (z) = K(E(Z)) A expt{t 2tdt} 

having jump discontinuities at ZH, Z2H. For z ? ZH, 

(18a) E(z) = el + f exp--} 
s 

ds 

(18b) E'(z) = A exp (-Z2/KJ); 
Kl 

for ZH _ Z < Z2H I 

(19a) E(z) = el + A exp (-ZH 2/KI) fexp 
I 

_ (E2 d ZH,2)/d 

(19b) E'(z) = A exp (-ZH2/IKJ) exp ( (ZH2 Z2)/- ) 

and for Z2H < Z, 

E(z) =ei + Aep { xp - e} 

(20a) jzKEl)C~ ~ s ~) s 

(20b) E'(z) = A exP{ Z} exp {Z2H - exp{ZH 22Hf 
K2 Kl K2 5 

We claim now that as 6 -? 0, E(z) tends to the internal energy function cor- 
responding by (1), to Neumann's solution. To see this, we show that as 5 -> 0, 
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Z2H - ZH -> 0 and Z2H , ZH tend to some common finite number z*. We will again 
assume, without loss of generality that Ki < K2, and 5 << Ki . By using (10) with 
0 = e2 and K = K2 and (16a), we find that 

(21 ) 2H < ~~(e2 - 
ei) K2' 

2 
(1 1 )(Z2,_, 2)} (21) -2 2H < (e e21/2 exp {- - (Z2H - Z 

or 
(/ 

1i\Z 2) 72-e K 
3/2 

(21a) exp K1 - (2- - (e2- 2H) 51/2 

whence 
- e2-e1 3/2' 

2 2 15K2 ~ke2 -2H) K2 
(21b) Z2H - ZH = K2- in [n 

(e3)1/2 J 

thus 
2 2 

(21c) Z2H-ZH -Z0o as 6 O 

We next claim that there exists a bound M1 independent of 6, such that 

(22) ZH , Z2H < Ml . 

However, noting that for Ki < K2, and since Z2H > ZH, the first two exponentials in 
(16a), with q = e2, are bounded by 1, we substitute the value of A obtained by 
writing z = ZH in (18a), and find 

(H - ei)Ki exp (-S2/K2) ds 
(23) O < e2 - 2H Z2H 

K2 10 
exp (-S /KJ) ds 

for all small 6 > 0. If for some null sequence of 6 values, we had Z2H - ?? then by 
(21c) we must have ZH bounded away from 0, in which case the right hand side 
would tend to zero, which is impossible. Thus (22) is proved. 

Using again (18a) with z = ZH we see that 

(24) A ? 2(H - ei)(Kl/T)712 > 0 

for all 6 > 0, so that the A values are bounded away from zero. Now by (16) with 
=e2 

(25) A K2(e2 - 2H) exp {(Z2H - ZH)/} f 2 0 
exp - -j exp (-S /K2) ds 

K2 K1) Z2H 

thus implying, by (15), that 

H = exp (-ZH /Kl)K2(e2 - 2H) 1 exp (Z2H/5) 

Lexp j2H/K2 
- ZH IKJ) exp (-S /K2) ds 

ZZ2H 

(26) j exp(-s2/8)ds 
ZH 

> F K2(e2 - 2H) exp (ZH 2/K ) (Z2H ZH) 

exp { - exp (-8 /K2/) ds 
K2 Kl Z2H1 
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where we have used the inequality 

fJ2 exp (-s2/a) ds ? ( Z2H - ZH) exp (-Z2H/a). 

ZH 

Thus 
2 25 oo 

AH exp Z2H - ZH 
I exp (-82 /K2) ds 

(27) Z2H - ZH ? 
K2(e2- 2H) exp (-ZH2/K) M2 

where M2 is independent of b. 
We claim now that A is bounded from above independently of 6; however, by 

(25), since Z2H is bounded from above, and since (27) implies that, 
2 2 

Z2H ZH < (Z2H + ZH) M2 

this assertion is immediate. This implies by (18a) for z = ZH that ZH and therefore 
Z2H , are bounded away from 0, independently of &. 

Thus for all a < Ki, there are constants co, cl, c2, such that 

(28) 0 < CO < ZH I Z2H I A < C1 < 00, Z2H -ZH < C26 

Now let a - 0, and choose the corresponding sequence E(z) of solutions of (6) with 
K(E) defined by (14), such that the points ZH , Z2H converge to one finite value z*, 
while the A values converge to a number denoted again by A. This can clearly be 
done by (28). Then E(z) as defined by (18a) for any closed subinterval of [0, z*] 
converges to a function, denoted again by E(z), and defined by 

(29) E(z) = el + (A/K1) J exp (-82/K1) ds, 

which can then be defined by continuity on [0, z*], with lim E(z) = H as z tends 
to z*. 

Moreover, by using the fundamental theorem of the calculus, the mean-value 
theorem for integrals, (18a) and (19a), we find for any a > 0, that 

pZ2H d 
exp (-(Z2H H) /) = 1 + exp ( 2(s - ZH 2) /) ds 

ZH 8 

1 - r e 2 (ZH 2/6 ) exp (- 2/6) ds 

= 1 - 2S* exp (ZH2/K1) JZIH exp (-f K(E(t)) dt) 
ZH ~K(E(s)) 

= 1 - 2s exp (ZH /K1)H/A, 

where ZH ? S*-< Z2H. Thus, by (20a), for z ? Z2H, 

E(z) = e1 + A exp (-ZH2/Kl) -1 _ 2H A (zH2/KD) 

(30) z exp 
(82 _ Z2 H)/K2) d 

K(E(s)) S 
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which converges to the function 

E(z) = el + A exp ( Z(Z*)2/KJ) (1 - 2z*H exp ((z*)2/KD) 

(30a)A 
fexp (-(s - (Z*)) /K2) ds 

K(E(s)) 

as 5 tends to 0, where in (30a), K(E) = Ki, for z < z*, and K2 for z ? z*. The two 
functions, of (29) and (30a), differ in magnitude by H at z = z 

We now wish to obtain the values of A and z*, and thus the values of the solu- 
tion, and to identify the results with those of Neumann. 

For this reason, let X = Z*/IK1I. Since for E(z) as defined in (30a) we have 

e2- 2H = E(oo) -E(z*), 

we have from (30a), with A obtained from (29) by setting z = zH, 

K2 (e2- 2H) exp (, K1/K2) exp (-X2) (H - el) 
(31) (7rK1)12 Erfc (XA ,ci2 K,2) _1/1/2 Erf X 

- XH exp (X K1/K2), 

where Erfc = 1 - Erf. Now by (1), 

(lc) e2-2H= C2(V- T), H-e1= c1T, 

so that (31) becomes 

K2K12 (V - TC) exp (-X2 Kl/K2)_ exp (_X2) ;xH7il12 
(32) K1 K2112TC Erfc (X(Ki/K2)1/2) Erf X c1 TC 

Now again using (29) with z = ZH , we find 

2(H - el)Kl1l2 = 2c1TcK11/2 
(33) A - 

71/2 Erf X 71./2 Erf X' 

where X is found from (32), and so (29) takes the form 

(34) E(z) = el + clT Erf (z/K11/2)/Erf X, 

for z < z* = XKJ112. From (30a) for z > z* we have 

E(z) = e2 - (E(oo -E(z)) 

(35) 7r12exp 2K/2)_2/22 = e2 - -A2 12 exp (-X2) - 2XHK1I] *Erfc (Z/K21) 

But by using (33), (32) and (3c), 
A ex (- 2) - XK2 2c1 Kil2 K2 Kil 

/2 (V - Tc) exp -XKK2 
- (1/2 K 1K21/2 Erfc (X(K1/K2)'12) 

so that finally, for z > z* = 1/2 

(35a) E(z) = _ c2(V 
-Tf) 

Erfc (Z/K2 12) 

By using the transformation (1) and (lc), as well as the definition z =x/(4t)12 
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we obtain as the solution, two temperature distributions in the Phase I and Phase II 
media, separated by the curve 

x(t) = 2z*tl /2 - 9X(Klt)l /2, 

where X is the root of (32); in I the solution T(x, t) is given by 

(36) T(x, t) = c Erf (x/(4Klt)112), 
Erf X 

while in II, 

(37) T(x, t) = - (V - T,)(Erfc (x/(4K2t)1/2) 
Erfe (X(Ki/K2) 112) 

which is the solution of F. Neumann. (See [1, p. 285].) The fact that any other 
null sequence of values a will lead to the same solution follows from the fact that 
any other such sequence would lead again to the transcendental equation (32) 
which has exactly one root. (See [3, p. 121].) Our proof is now complete. 

3. Remarks on the Derivation of the Equation. We have been led to considering 
a function K as defined by (2) by the following heuristic argument. In any change of 
phase involving some latent heat H, the internal energy at a point undergoing 
such a change of phase (i.e. melting) reaches a critical value H. Then all additional 
heat will merely contribute to the mechanism of phase change (i.e. change from a 
crystalline to liquid structure), until the internal energy locally reaches the value 
2H, at which time the new phase is attained. Thus heat should not be conducted 
"in" the region of the interface between the two phases but will be used merely to 
change the phase. 

4. Numerical Computations for a One-Dimensional Slab. The usefulness of the 
result of Section 2 rests on the possibility of its extension to more general phase 
change problems for which no explicit solution is known. For by applying numerical 
procedures to problem (3a, b) or to its analog arising from other phase change 
problems, and then obtaining the temperature distribution from (1), one could hope 
to solve such problems numerically, without the costly necessity of paying explicit 
attention to the location and behavior of the phase change curve or surface. (See 
[4, p. 249].) 

In this section we describe the results of some numerical experiments made for 
a problem of freezing a one-dimensional semi-infinite slab. Our computations are 
for the case in which, in the notation of Section 1, V = Tc ; this is a common situa- 
tion which is not dealt with by the work of Section 2. Nevertheless, if in (31), 
e2-> 2H, we obtain in (34) a solution e(x, t) to our original problem, for 5 = 0, 
again yielding Neumann's temperature distribution given by (32), (36), (37) for 
this case; it is reasonable to conjecture that this solution is also obtainable from 
the limit of the solution of (3a, b, c) for V = T, as E, a --* 0. 

We consider the case where V = T, = 170, H = 30, ci, p, Ki = 1, i = 1, 2. 
Defining T as a function of e by (1), and choosing for K(e) the step function 

r1, 
e < 30, 

(38) K(e) =4t, 30 < e < 60, 
Ij, e > 60, 
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TABLE I 

Location of interface 

t x*(t) x* 

0 0 0 
20 9.79905 9.19076 
40 13.85795 13.10134 
60 16.97245 16.24252 
80 19.59810 18.73658 

100 21.91134 21.37472 
120 24.00268 23.66167 
140 25.92585 25.52550 
160 27.71590 26.99391 
180 29.39716 28.29732 
200 30.98732 30.07765 
220 32.49978 31.92538 
240 33.94491 33.66367 
260 35.33099 34.20495 
280 36.66470 36.11142 
300 37.95157 37.83937 

TABLE II 
True solution values 

x T 

0 0 
2 12.589754 
4 25.095902 
6 37.436500 
8 49.532872 

10 61.311111 
12 72.703425 
14 83.649283 
16 94.096340 
18 104.001112 
20 113.329385 
22 122.056374 
24 130.166616 
26 137.653646 
28 144.519453 
30 150.773771 
32 156.433226 
34 161.520389 
36 166.062763 
38 170.000000 

we seek a solution to the equation 

(3a') et = (K(e)e)x, x, t > 0, 

for which e(0, t) = el = -140, e(x, 0) = e2 = 60. For Ax, At > 0 and natural 
numbers i, j, define ei' = e(iAx, jAt). Equation (3a') is formally replaced by the 
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TABLE 111 
Error com puted solution -true solution 

x ax = 2 tzx= 1 axx= .5 ax = .25 ax = .125 

0 0 0 0 0 0 
2 .02006 .01582 .01675 .00873 .00476 
4 .00318 .03165 .03338 .01733 .00946 
6 .05984 .04750 .04974 .02570 .01406 
8 .01090 .06341 .06570 .03385 .01851 

10 .09776 .07947 .08109 .04136 .02276 
12 .02832 .09577 .09575 .04846 .02676 
14 .12883 .11240 .10949 .05498 .03049 
16 .05654 .12935 .12209 .06086 .03389 
18 .13880 .14652 .13335 .06607 .03695 
20 .09171 .16363 .14313 .07057 .03964 
22 .10239 .18026 .15129 .07438 .04195 
24 .15842 .19586 .15771 .07750 .04383 
26 .07321 .21007 .16220 .08003 .04530 
28 .38241 .22530 .16464 .08205 .04631 
30 .27324 .25031 .16471 .08381 .04681 
32 .71507 .27405 .16188 .08564 .04678 
34 .35301 .20271 .16155 .08431 .04590 
36 - .18386 .43959 .24106 .08048 .04622 
38 0 0 0 0 0 

difference equation 

j+1 _ (39) A t = 
[K(e4+1/2)(e+l ei') 

- 
K(e2-1/2)(ej' -e.-I) 

with e^? = e2 , eo0 = el , and 

(40) 
K(e?1/2) 

= 2(K(eij) + K(eji) ). 

We require that 2zAt/jzx2 < 1, a condition which probably guarantees the stability 
of (39). 

In Section 2 the interface between the two phases was seen to be the limit, for 
a5-+ 0, of those points (x, t) for which H < e(x, t) < 2H. In our computations, we 
choose as an approximation to the location of the interface curve for t = jZAt, the 
point izAx where i is the greatest integer for which 

(41) eij < H < ej+l . 

This is practical, since as indicated in [4], when a = 0 the width of the interval at 
fixed j, for which H < ei3 < 2H cannot exceed 2zAx, while for sufficiently small 
a > 0, the width of the interval does not increase significantly beyond 2A\x. (Which 
is intuitively clear since for small 6, little heat can be conducted across the interval.) 

To explain our numerical results, we denote by Ti' (6, zAx, w), ei' (5, zAx, w) 
for w = 2zAt/zAx2, the temperature and energy obtained by (39) at (izAx, jzAt) for 
the choice of ( in (38), and given values of zAx and w. 

Using (38), (39), (1), the temperature Ti((6, zAx, w) was computed at time 
t = 300 for various choices of 6, ZAx and w, and compared with the actual solution. 
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TABLE IV 

x Error Relative error = 
error/true value 

0 0 0 
2 .00435 .0345 X 1O0-1 
4 .00860 .0343 X 10-2 
6 .01274 .0340 X 10-1 
8 .01668 .0337 X 10-2 

10 .02039 .0332 X 10-1 
12 .02379 .0327 X 10-1 
14 .02687 .0321 X 10-1 
16 .02958 .0314 X 10-1 
18 .03190 .0307 X 10-1 
20 .03382 .0298 X 10(- 
22 .03535 .0290 X 10-1 
24 .03646 .0280 X 10-1 
26 .03719 .0270 X 10t- 
28 .03755 .0260 X 102 
30 .03755 .0249 X 10-1 
32 .03716 .0238 X 10-1 
34 .03702 .0229 X 10-O 
36 .03047 .0188 X 10-1 
38 0 0 

In Table I is listed the actual location of the interface curve x*(t) 2Xt1/2 
at intervals of 20 time units for the root X = 1.0955674986099 of (32); also shown 
are the results of interpolating for the point x*j where e = H from the values 
ei3, e,+? of (41), for a 0, Ax = 2, w = 1. It is seeii that the error in each of these 
values is less than Ax = 2. This same degree of accuracy, witlh anl error smaller 
than Ax, was obtained in all the experiments performed. 

In Table II are listed the true temperature values at time 300, anid at intervals 
of length 2 from x = 0 to x = 38; from Table I we know the initerface is at x = 37.95 
for t = 300. 

We began by computing the values of Tj3(0, Ax, 1), for Ax = 2, 1, .5, .25, .125 
and comparing them with the true solution of Table II. Ill Table III is listed the 
error = TA3(O, Ax, 1) - T(iAx, jAt) for each of these cases. The errors for ax = 1 
are seen to be linear in x. In halving Ax to .5, the error is reduced ilear the interface. 
In again halving Ax to .25, the error is seen to be halved, implying that extrapola- 
tion from these values to Ax == 0, by letting Tij = 2Tjj(0, .25, 1) - Tjj(0, .5, 1) 
will reduce the error Ti3 - T(iAx, jAt) by one additional decimal place except at 
x = 36. Halving Ax again, to .125, no longer halves the error, raisinig doubts as to 
whether the solution of (39) actually will converge to the true solution as Ax, At -O0. 

The choice w = 2At/jAx2 = 1 in (39) does not yield the most accurate results. 
In Table IV are listed the errors and relative errors for TA3(O, .125, .5), when 
w = .5. These results are somewhat more accurate than those found for 
Tj3(0, .125, 1) of Table III, as was indicated in [4]. 

Our last experiments were made for small a # 0. The values of Tj'(5, Ax, .5) were 
found for Ax = .25, .125, and a = .001, .0001. For each value of 6, the two values 
Tij for Ax = .25, .125 were extrapolated to Ax = 0, yielding 
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TABLE V 

Errors in extrapolation for a # 0 

x Tii(.001) Tii(.0001) 

0 0 0 
2 .00022 - .00017 
4 .00041 - .00038 
6 .00052 - .00066 
8 .00053 - .00106 

10 .00040 - .00569 
12 .00012 - .00226 
14 - .00033 - .00312 
16 - .00096 - .00414 
18 - .00178 - .00534 
20 - .00276 - .00671 
22 - .00390 - .00820 
24 - .00518 - .00981 
26 - .00659 - .01148 
28 - .00814 - .01319 
30 - .00998 - .01504 
32 - .01232 - .01719 
34 - .00942 - .01400 
36 - .01546 - .02295 
38 0 0 

Tij(() = 2Ti3(5, .125, .5) - Tij(, .25, .5). 

The errors of the resulting values are listed in Table V. For a = .001, the values 
Tij(() are the most accurate of any calculations performed. When a is decreased to 
.0001 the error grows, due we believe to the growth of the derivative of the solution 
at some points. 

For a = 0 the function K(e) of (38) could be considered replaced by the smooth 
function K(e) of (2) with no change in the numerical results, when 

(42) E < ?x- min IexI. 
H_e_2H 

This relation raises questions about the convergence of the solution to (38), (39) 
to the true solution e(x, t) as zAx, z\t -+ 0, since we would then have E -?> 0, causing 
K'(e) to grow of the order 1/E over certain intervals of small length. (See Figure 3.) 
Indeed, as indicated by our numerical results, further study of the ideal relations 
between 6, E, ZAx and zAt for computing the solution of our problem, would be of 
both theoretical and practical value. 

In all of our experiments the true interface location never differed by more than 
zAx from the location given by (41). However, an attempt to better locate the curve 
by interpolating for the point at which e = H did not result in greater accuracy, 
and a deeper examination of the roles played by E, 6, ZAx, zAt might also be of help 
in this regard. 

New York University 
Courant Institute of Mathematical Sciences 
New York, New York 
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