
A Modified Monte-Carlo Quadrature 

By Seymour Haber 

1. Introduction. The simple Monte-Carlo method for approximately evaluating 
an integral I = CA f dv, where A is a region in k-dimensional Euclidean space and dv 
is the volume element, is as follows: For some integer N, points X1 , X2, * . , XN are 
chosen at random (i.e., with uniform distribution) in A and the integral is estimated 
by the quantity 

f(xi) + *. + f(XN) 

where "I A 1" denotes the (k-dimensional) volume of A. If the xi are regarded as 
independent (or at least pairwise independent) random variables, then the esti- 
mator J is a random variable whose mean is I and whose standard deviation is 
dAN-12, where d2 =A I rA f2 - (A f)2. (I is the mean, and d is the standard devi- 
ation of the random variable I A I f(x), where x is a random variable uniformly dis- 
tributed on A.) The standard deviation of J is taken as a measure of the error to be 
expected in taking a sample value of J, as above, as an estimate of I. The error thus 
decreases very slowly as N (and the expense of the calculation) increases and may be 
unacceptably large even for quite high values of N. As a result, a great deal of effort 
has gone into devising more sophisticated forms of Monte-Carlo procedures (see, 
e.g., [1]) in order to replace J by estimators of lower variance. Each of these methods 
involves adaptation of the computation procedure to the particular function being 
integrated; thus it necessitates preliminary analysis of the integrand and the writing 
of a special integration program. (Monte-Carlo calculations are generally done on 
automatic computers.) In this paper we present a modified Monte-Carlo quadrature 
method whose application is completely automatic and which produces an estimate 
of I whose variance is slightly, but often significantly, lower than that of J. 

2. The Procedure. Our method is a form of stratified sampling [2]; however the 
region A (the "population") is broken into subregions defined simply in terms of its 
geometry, rather than in terms of the values off we expect to find in them. We define 
the procedure in the case that A is a k-dimensional interval, i.e. the cartesian product 
of one-dimensional intervals (a', bi), i = 1, * - *, k. (By using other than cartesian 
coordinates, the method may be applied to regions of some other shapes.) Each 
interval (a', b') is divided into subintervals by the subdivision points a' = ai,0 < 
aij < ... < ai,i = b'. This is done in such a way that for each i the differences 
ai+, - ai,j are commensurable; most simply, all of them may be multiples of the 
smallest one. The interval A is thus subdivided into n = ni * n2 . * . . * nk subintervals 
defined by inequalities of the form ai,j < xi < as j+l . (It is of no significance 
whether we use strict inequalities, as written, or loose; the points left out form a set 
of (k-dimensional Lebesgue) measure zero.) Calling these subintervals, in some order, 
A1 , A2, *... A, , we observe that since their volumes are commensurable there is a 
least number a such that a I Ai I is an integer pi for all i, and so if N = 
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(pi + + pn)'m, in an initeger, it is possible to distribute N points xi , , XN in 

A in such a way that the number of points found in each Ai is proportioinal to I Ai |. 
We do this by fixing n, and therefore N, and then choosing m - pi points at random in 
Ai, for each i; and we take as our estimate of I the quantity 

It=tA 
I 

NfXt 

The simplest, and in inost cases probably the best, form of this procedure, is to 
divide each interval (as, bi) into equal subintervals (though the subintervals for 
one i need not be equal in length to those for another i). Then the A i are all conrgruent 
and we can just choose oine poinlt in each Ai and then calculate J'. In this case m = 1 
and pi = 1 for each i and N = n. When referring to this case, we shall denote the 
estimate of I by J"; so that anything said below about J' applies also to J", but not 
conversely. 

Theorem 1, below, is a form of a standard result in the theory of sampling; see, 
e.g., [2]. A proof is given here for the sake of comupleteness. 

3. Error Analysis. In each Ai, i = 1, * n* , n, we choose at ra'ldom m p- points 
Xi,J, Xi,2, Xi,m pi i Treating the poinits as independent random variables, with 
each xi j uniformly distributed over A i, we have ("m(- )" and "2( ) "denoting, as 
usual, the mean and variance of random variables): 

a2(f(xi,j) f2= fA|(A | 1, , i)) 

We shall call these last quantities "nin" and "oiQ. Now 

A n m- Pi 

J = AJ j Zf(xiw) Ni=1 j=1 
and so 

gn( ) =N 7-11 1 Ai I JAi 
since pilj Ai I = Nl/(mi A I) . Also, 

'2(j') = A p i . 

The variance of the simple Monite-Carlo estimnator J, with an equal number of 
points N, is 

2( 
( JA (JA 

f 

Nown*p n = N -Ai/1 A land so 

() 2(J') = A N ZIA i2 = IAN j(f f - n_) 

A |(2 
n EiA 
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Thus 
n 

N(o2(J) - 0(J')) = A I Ai ms2_I2 

= A E Ai (mi- A) 

which is nonnegative, and we have proved: 
THEOREM 1. For any integrand (in L (A)) 

O'2(J/) < _2(J)7 

when the integrand is evaluated at the same number of points in the calculation of J and 
of J'. 

Thus there is never any loss of expected accuracy in replacing simple Monte- 
Carlo quadrature by the method proposed. In fact, the two standard deviations are 
equal only if (1/1 Ai ) f A, f is independent of i, which would certainly occur only 
rarely, so that generally we can expect a gain in accuracy. 

For the simple version (where we denote the estimate by J") we can say more, if 
the integrand is continuous and if we restrict the shapes of the subintervals in a 
certain way. 

Definition [3]. If A is a k-dimensional interval Ji7=L (a', bi) the "modulus of reg- 
ularity" of A is the quantity 

p(A) = I A I/max (bi - ai- 
1<i<k 

A collection of intervals is called "regular" if there is a number Po > 0 such that 
p(A) > po for every interval A in the collection. 

THEOREM 2. If the integrand is continuous on the closed interval A, and the col- 
lection of subintervals used in calculating J" for a sequence of values of N going to 
infinity is regular, then o-(J" )/o- (J) O-0 as N -> oo through the sequence. 

Proof. Since for each N the subintervals are all congruent and so of volume 
I A I/N, the regularity condition implies that as N goes to infinity the diameters of 
the subintervals approach zero uniformly. f is uniformly continuous, so the quantity 

2 _ 1 f/ 1 A2 

goes to zero uniformly in i. Thus for any positive e there is an N(E) so large that for 
N > N(E) 

(j) = I A E1 A2 _12 + .+ N2 A l2 
N j=1 N N < N 

so that o(J") = o(N-112), while cr(J)/N-'12 = d > 0. 
So we see that under the hypotheses of Theorem 2 the expected error actually goes 

to zero faster than N-112. The continuity hypothesis can be greatly relaxed. If the 
integrand is bounded, and its discontinuities all lie on a few smooth (k - 1)-di- 
mensional surfaces in A (as is usual when the integrand comes from a physical 
problem), the conclusion still holds. For then if e is mny positive number, there is an 
open subset B of A, of measure at least A - E, on which f is uniformly continuous. 
For N sufficiently large at least N( 1- 2E) of the Ai lie entirely in B and the above 
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reasoning may be applied to them; and the remaining Ai cannot contribute more 
than CEN"-12 to o-(J"), for some constant C depending on the bound of f. 

However the increase in the speed of convergence is not great. By imposing 
further smoothness conditions on the integrand we can obtain a precise result: 

THEOREM 3. Under the hypotheses of Theorem 2, if f is also differentiable and its 
gradient is continuous and bounded on A, then there are positive numbers C ,and C2 

independent of f, such that for any e > 0 

IA I 
1+11 (i Vf N1/221/k< 

(C2 e) 121/2 (IJA I I 2) o.(I N-1/2I/) (J 

< ( i 4E IA 11+1/k ( 1 \ 1/2N 12-l ? ( Cl + e ) 
121/2 -A I I Vf k 

for all sufficiently large N. If all the subintervals used in the calculation of J" are 
(k-dimensional) cubes, then C0 = C2 1. 

Proof. Let wi = (wi', *--, wi) be the center of the subinterval Ai. Let 
Ci = f (w ), di' = (af/laxj) (wi). Then throughout Ai 

k k \1/2 

f(x) = ci + E di(xj- wj) + 0 E (xi -w) 2 
j=1 j=1 

(Here and below the symbol "o( )" refers to what happens as N > oo and the 
diameters of the Ai shrink to zero.) We can write 

f f2 1( f) 

as 

(2) J [Ci + E di'x' + o(r)] dx- (f [ci + di7xj + o(r)] dx), 

where A' = ITP=' (a', bV) is the region obtained from Ai by the translation taking 
wi into the origin, and r is the distance of x from the origin. 

Now 

L r2 dx = k L (xz)2 dx = 1 A (bi - a-)2 A =1 A12 j=1 
Let p be a lower bound for the moduli of regularity of all the subintervals Ai used 
for the various values of N in the sequence under consideration. Then 

max (b - a' )2 < (p-1 I A' 1)2/k 
1<j<k 

Since for any fixed N, I = I A' I = I A I/N, we have 

r2 dx<kp72Ik IA 11+2/k 

JA't 12N1+2Ik 

It follows that 

L (r) (L (r) (Lo r) ( (N-- 
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aind also that 

IA' ( dzijx) (o(r)) < 
LL Z dix) IA| (o(r))2j = o(N1) 

since 

I (E dIjX') = I E (dijxj)2 = 12 (dij)=(b -a')2 

<_I Vf ( Wi )j12P-2/k I A' I1+2/k 

12 

Expanding out (2) and making use of these estimates, we obtain: 

( ) Lf I (LA f) - 2 1 E (dij)2(b' -a)2 + o(N-lI 

Now 
k 

I Vf(W) 12 mi (bj - aj)2 < E (dij)2(bj - aj)2 ? I Vf(wi)12 max (bj -a a)2, 
j=l 

I A' I _ a b j 
max (bi - ai)k _ p max (bk a 

while 

min (bj- aj) > a I A' I ~ I A' llk I A' 
llk 

kc-1 
-max (b - ai)k-1 (max (bi - ai)) 

> p1llk I A' llk; 

so that 

(4) P2 (PIA I ) Vf(w,) 2 
k 
j (d,')2(b - ai)2 P-1 V A I 

fwk 12. 

We now set C1 = p-2k C2 = p2-2k and note that 

N 

(5) 1IAi IIVf(wi)I2 jIVfI2 as N-oo. 

The theoremn now follows from (1), (3), (4), and (5). 
The proof indicates that, in a case where it is known that the integrand varies 

more rapidly with certain of the variables than with others (i.e. certain partial 
derivatives of/Ox' are generally greater in magnitude throughout A than others) it 
would be best to subdivide the edges of A so that bj - aj is approximately inversely 
proportional to Of/axj, on the average. This would incorporate a weak form of im- 
portance sampling into the calculation of J", and would naturally require a prelimi- 
nary analysis of the integrand. In the absence of such analysis it seems that it would 
be best generally to so subdivide A as to make the bj - aj nearly equal. This would 
put p near one, and so minimize the constant C, in the upper bound for u(J" ). 

If p is close to one, then a(J")/1o(J') will, for large values of N, be approximately 
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equal to (d'/sd)N-l/k, where 

d" -IA 11?1/k/11 \1/2 d 
11/2 =AIIA Vf 2) 

d" is a measure of the variability of f on A, just as is the variance d. If A is a cube and 
f is linear, dl" = d. Otherwise d" /dI may be larger or smaller than one. 

4. Experiments. Tables I and II display the results of the calculation of two 
integrals by the simple and modified Monte-Carlo methods on the IBM 7094 com- 
puter of the National Bureau of Standards. In both cases the dimension k was 4, and 
the region of integration A was the unit cube. In the modified Monte-Carlo calcu- 
lations A was partitioned into cubes by partitioning each of its edges into the same 
number of equal subintervals. In each table N is the number of points used, E1 is the 
error of the simple Monte-Carlo calculation and E2 that of J . ri is the ratio of I El 
to the probable error (at the 50% level), which is taken as .6745or(J); r2 is, similarly, 
the ratio of I E2 to that quantity. In Table II r3 is the ratio of I E2 Ito the probable 
error of J that would be indicated by Theorem 3, i.e. to the quantity .6745 d"N314. 
The pseudo-random points used for each calculation were the points 

X ({n(n + 1) 21/2} {n(n + 1) 31/2} {n(n + 1) 51/2} {n(n + 1) 71/2}) 

where {a} is the fractional part of a. 
For table I the integrand was given by f(x) = 1 if (xl)2 + + (X4)2 < 1, 

f(x) = 0 otherwise. The true value of the integral is .308425, and d = .462. In Table 
II the integrand f(x) = exp [xlx2x3x4] - 1; the integral is .0693976, d = .112, 
d" = .142. 

The first integrand is discontinuous, and the second is smooth. In each case the 
results of using the proposed method were better than those from simple Monte- 
Carlo, but the improvement was greater in the second case. The last 2 columns of 
Table II show the results to be in fair agreement with what one would expect after 
Theorem 3. 

I wish to thank Mr. Louis Joseph and Mr. Kenneth Kloss, of the National 
Bureau of Standards, for carrying out these calculations. 

TABLE I 

N El E2 ri r2 

16 .0584 - .0666 .74 .86 
81 - .0002 - .0002 .01 .01 

256 - .0119 - .0080 .61 .41 
625 - .0180 .0012 1.45 .10 

1,296 - .0087 - .0072 1.00 .81 
2,401 - .0085 - .0023 1.35 .37 
4,096 - .0075 - .0024 1.55 .49 
6,561 - .0064 - .0008 1.67 .21 

10,000 - .0011 .00122 .35 .39 
65,536 .00052 - .00037 .42 .31 
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TABLE II 

N El E2 ri r2 r3 

16 - .0067 - .0033 .36 .17 .27 
81 - .0040 .0003 .48 .04 .09 

256 - .0010 - .0008 .21 .12 .37 
625 .0026 .0024 .86 .81 3.18 

1,296 - .0003 - .00038 .15 .19 .87 
2,401 - .0015 .00001 .98 .00 .03 
4,096 - .0009 .00026 .77 .22 1.42 
6,561 - .0014 - .00008 1.55 .01 .05 

10,000 .0012 - .00022 1.64 .29 2.34 
65,536 - .00021 .000026 .73 .09 1.04 

5. Discussion. A disadvantage of the proposed method is the restriction it im- 
poses on the number of points N. N must be a multiple of ni - n2 . . . -.nk ; if p is to be 
near one, the ni are themselves restricted in the values they may take. In the very 
simplest situation, where A is a cube and the Ai congruent subcubes as in the above 
calculations, N must be one of the numbers 2k, 3k 4k, ; and even for moderate 
values of k only a few of these values of N are practicable. In the more general 
situation the restriction is not quite so tight. In all cases the number N must be 
fixed in advance, and the calculation redone from the beginning if N is changed. 
In simple Monte-Carlo, by contrast, if it is suspected that a calculation done with 
N points did not result in sufficient accuracy, and a calculation with N' > N points 
is wanted, it is necessary only to calculate another N' - N points. In practice this 
last point is not apt to be very serious. Convergence is so slow in simple Monte- 
Carlo that for a significant improvement in accuracy N' will have to be considerably 
larger than N, so that calculating N' points will not be much more expensive than 
calculating N' - N. 

Another disadvantage is that the expected error cannot be neatly estimated as 
in a simple Monte-Carlo calculation. In the latter, one can, by calculating f2 to- 
gether with f at each point, get an estimate of f f2 and so of d in the course of the 
calculation. There is no similarly inexpensive way of calculating d . One might 
modify the calculation by choosing two points, xi and xif, in each subinterval A,, 
and calculating the auxiliary quantity (f(xi) - f(xi'))2. Then 

A12 NE ( ) (t)] IA V(i fx 
2N2 

is a good estimate of cr2(J). However, taking the quantity 

A __ [f(xi) + j(xi')]/2 

as an estimate of the integral is equivalent to making two independent evaluations 
of Jr and averaging them. This reduces the variance by a factor of 2; so the es- 
timated standard deviation of the last estimate of the integral would be 

| A t [f (xi) - f (xi)]2) 
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The extra computing required to place the random points in the At coimes to 
2k additions per point. This will be significant only if the integrand is very easy to 
calculate and N is very large; and the larger N is, the greater the advantage in 
accuracy of the present inethod. 

It is of some interest to compare J" with the nonrandom integration rule in 
whichf is evaluated at the center wi of each subinterval Ai ,and (I A I/N) Z==i f(wi) 
is taken as the approximate value of I. This is a k-dimensional "midpoint rule", 
and it can be shown that if the integrand has bounded second partial derivatives, 
the error will be asymptotic to CN-2/k, where C is some constant depending on f. 
If the integrand satisfies only the hypotheses of Theorem 3, all that could be said, 
in general, is that the error would be 0(N-lIk). It thus appears that by choosing our 
point at random in the subinterval, rather than fixing it at the center, we gain the 
full strength of Monte-Carlo computation: the exponent - 2, characteristic of 
Monte-Carlo, is added to the exponent - l/k which is characteristic of the mid- 
point rule (and in fact of any nonrandom rule) for the class of functions considered. 
This seems rather surprising, and an explanation is to be sought, we believe, in 
the consideration of the uniformity of distribution-in the sense discussed in [4]- 
of the points at which the integrand is evaluated. It appears that the set of randomly 
chosen points is on the average better distributed, in a certain sense, than the set 
of the central points of the subintervals. 

I wish to thank Dr. Joan R. Rosenblatt, of the National Bureau of Standards, 
for helpful comments and references to the statistical literature. 

6. Conclusion. The last few years have seen a great decrease in the cost of very 
long computations. A further decrease, by one or two orders of magnitude, can be 
expected in the next five or ten years. When the Monte-Carlo procedure was first 
suggested, at the beginning of the automatic computer era, computation was 
relatively slow and expensive and the method could, in most cases, be successfully 
applied only if an analysis of the problem led to special adaptations which reduced 
the variance very greatly. Now, however, even simple Monte-Carlo is becoming 
increasingly practical. It seems desirable, at this time, to begin to design automatic 
procedures of the Monte-Carlo type which may be kept as "library routines" to 
be used, without much analysis, by any investigator needing the value of a multiple 
integral. 

National Bureau of Standards 
Washington, D. C. 
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