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1. In this paper we shall be concerned with two methods. The first one is that 
of conjugate gradients or least squares used for approximate computation of Ax = f 
where A is a positive definite (symmetric) n X n matrix [2, 3, 6, 11]. It amounts to 
minimizing (with respect to the ai) the expression: 

k-1 

( 1.1 ) |l A E 2aiA if-f 
i==O 

where k is a predetermined integer (usually much smaller than n) and where JJ 
denotes the L2 norm. Then g = ZSk1 aiA'f is taken as an approximate solution. 

The second method is the generalized gradient or minimal iteration method used 
for an approximate computation of eigenvalues and eigenfunctions [3, 5]. 

It can be described as follows: Denote by Hk the subspace spanned by the vectors 
f, Af, ... , Akf; denote by P the orthogonal projection on Hk and by B the restric- 
tion of PA to Hk (it is a well-defined k + 1 X k + 1 matrix). Then ..ma. , the largest 
eigenvalue of B is an approximation to Xmas. the largest eigenvalue of A, likewise 
Amin approximates Xmi. (we exclude here certain singular cases). There are, though, 
quite a few computational techniques for a numerical solution of this problem. 

In Section 2 we shall discuss the matrix B. In Section 3 we shall establish a 
minimax property of general positive measure that will be needed in Sections 4 
and 5. 

In Section 4 we shall derive estimates for the conjugate gradients method. In 
Section 5 we shall discuss the rate of convergence of the generalized gradient method 
in terms of Xi (the eigenvalues of A). It turns out that we get fast convergence for 
the leading eigenvalues of A (positive or negative); the convergence process for the 
positive eigenvalues is not perturbed so much by the existence of negative eigen- 
values having large modulus and the effect of having two close eigenvalues is limited. 

Let us note that there are some global estimates of the error that do not depend 
on the initial function f nor on the distribution of the eigenvalues of A. These 
estimates depend on k and 11 A 11 only [9]., However the "guaranteed" rate of con- 
vergence is very slow and can not serve as a basis for computational techniques. 
In these estimates the convergence is not necessarily towards the largest or smallest 
eigenvalue. 

The reader will notice that the order of the matrix A does not play any role. 
Therefore the estimates presented in this paper can be carried to the more general 
case where A is a Hilbert space operator. The theorems and proofs are exactly 
the same. 

2. The Auxiliary Matrix B. 
PROPOSITION 2.1. Let p(x) be a polynomial satisfying I p(Xi) I < r where Xi are 

the eiqenvalues of A then for any vector f C H: II v(A)f I I< ? II f I1. 
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PROPOSITION 2.2. If for some ,u and f: | Af - if ? <e f then ther e exrists> 

eigenvalue of A so that - < 
These two propositions are a direct consequence of the spectral decompositio 

theorem. 
Let us prove now: 
THEOREM 2.1. Let p(x) be a polynomial of degree at most k satisfying I p (Ai) I < 

where ,ij are the eigenvalues of B then: 

(2.1) 11 p(A)f || -? ell f 11. 

Proof. B operates in Hk c H so for any q(x): q(B)f is well defined and belong 
to Hk. 

We shall prove inductively that for i = O,1, , k, Atf =Bf. Indeed: 

A'f= PA'f PAA`1f = PA(PA)1f = BB-1f = Bf. 

Therefore if p(x) has degree at most k then p(A )f p(B)f. Now by Proposition 1 
p(B)f 11 < -f from which (2.1) follows. 

PROPOSITION 2.3. If Xi+ is the ith largest eigenvalue of A; Ai the ith largest eigen 

value of B; Ni the ith smallest eigenvalue of A; Ai' the ith smallest eigenvalue of B then 

(2.2) IA l> Xi+ > i+. 

(2.3) -hA l< $i -< Aui- 

These inequalities are direct consequences of the minimax prinlciple. For example 

X+ = mm max (Af, f) 
Oi,02,' ' ',<Pi-I f 1 01,02,' ' '. i-l lIf 112 

> mini max (Af, f) f E Ik 
01 02 * ",Oi-1 fI l 1'2S' * * fi-f lEf 112 

= m fiKmin max (Af f) f E Hk 
Al 42,-' { i-l f I l.- . Ai-l llf ll2 

where 4Kj = Poj . If (K1, ..., q5i-1) get all possible values in H then K4", ,6. 

get all possible values in Hk . Moreover for f E Hk we have by the definition of 
B: (Af, f) = (Bf, f) so by the minimax principle the last expression is Ai+. 

THEOREAi 2.2. If B has a multiple eigenvalue then A is invariant in Hk and B is 

the restriction of A to Hk . In this case if A 1f exists it belongs to Hk and the eigenvalues 

of B coincide with some eigenvalues of A. 

Proof. It is sufficient to prove that A is invariant in Hk because then for any 
g E Hk, Ag = PAg - Bg and the other properties are well-known properties of 
invariant subspaces. This can be restated as proving that for any j: 

(2.4) A f = Ea Z ijAf, l < k, 
i=O 

which will be proved by induction. 
Let gl and g2 be two different eigenfunctions that correspond to the same eigen- 

value ,u. gi = Ei==o 3iAif; g2 = Zi=o yiAif. There exists a linear combination of 
gi and g2 that satisfies g = Z_Z= aisA f. We have by the definition of P: 
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k-i k-1 k-1 k-1 

O-=PAg - lg = PA E,aiA "f1-,uE aiAtf aiA'+1Jf,u E aeiAif. 
i==O i=O i= =O 

So for some 1 ? k we have: 

(2.5) A1+'f= Eaiz+iAf. 
i=O 

Suppose now that (2.4) holds for j: 

Ai+if = AAjf = AZ a iAf- aiqAif + a fjAl+f 
i=o i=o 

= E aijAi+if + aIjE aiz+,Aif j=o i=o 

The last expression can be regrouped as in (2.4) to complete the induction and the 
proof of the theorem. 

THEOREM 2.3. The conclusions of Theorem 2.2 remain valid if some eigenfunction 
of A belongs to Hk . 

Proof. In view of the proof of Theorem 2.2 it is sufficient to establish (2.5). 
Indeed, since we can express the eigenfunction g as g 9?=o aE A f where l ? k 
it follows that the equation Ag - Xg = 0 can be written in the desired form. 

3. A Minimax Property for Measures. 
THEOREM 3.1. Let V be a positive measure supported by the interval [a, [] and 

satisfying: I V I = f dV = C. Let y be outside [a, f3]. Let q(x) be polynomialsof 
degree not more than k that satisfy q(Qy) - 1. Then: 

(3.1) sup mn(f I q(x) 12 
dv) = 

(C)1/2 Tk (27 - + ( )[ 
IV I =C q (x) a / a 

where Tk(x) is the Tchebisheff polynomial of order k i.e. 

Tk(X) = { (X + (X2 112)k + (X _ (X2 _ 1)i/2)k} 

Proof. Without loss of generality we can transform a to -1 and [ to 1. This 
way'ywillbetransformedto v (2'y - ([3+ a))/(f - a). 

Let us allow the function under the integral sign to be any polynomial p(x) 
of degree 2k that is nonnegative on [- 1, 1] and satisfies p(v) = 1. This set is 
convex and compact. The set of all positive measures V on [-1, 1 ] that satisfy 
I V I = C is convex and compact in the weak* topology of C(-1, 1) (uniform con- 
vergence). Moreover: 

1 j.1j* 

j {tp1(x) + (1 - t)p2(x)} dV = tJ p,(x) dV + (1 - t) ]p2(x) dV. 

fp(x) d[tV, + (1 - t)V2] = t p(x) dV, + (1 - t) fp(x) dV2. 

These are the standard conditions [10] that insure: 

sup min p(x) dV = min max p(x) dV, p(v) =1. 
IVIC=c p(x) p(x) IvI=c 
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For any fixed polynomial the measure that maximized the integral is C5(xo) where 
xo is a maximum for p(x). Hence: 

min max fp(x) dV = min max p(x) -C, p(v) = 1. 
p(x) V = p(X) -1?<<l 

It is well known that this minimum is attained for the polynomial [Tk(x)/Tk(V)]2. 
Thus the proof is complete. 

Remark. The theorem can be inferred from [13]. We believe that our proof, 
though not elementary, is shorter. 

4. The Conjugate Gradients Method. In this section we shall use the theory of 
polynomials of best approximation. 

Definition. Let f(z) be a continuous function on a closed set of complex numbers 
D. Let k be a fixed integer. 

A polynomial t(z) of degree at most k is said to be the polynomial of best approxi- 
mation to f(x) on D if: 

max I t(z) - f(z) I = a 
zED 

while for any polynomial r(z) 5 t(z) of degree at most k: 

max I r(z) -f(z) I > a. 
2ED 

If D contains at least k + 1 points then t(z) exists and is unique. 
We shall use the following particular case: 
THEOREM 4.1. Let xi, i 1,.**, Ik + 2, be real numbers satisfying: xi < X2 

< Xk+2 and let {yi}, i = 1, * , k + 2 be any sequence of real numbers then the poly- 
nomial t(x) of degree k that comes closest to y, on xi satisfies: 

(4.1) t(xi) - yi (-l)*na 

where = ?1. 
Conversely if t(x) satisfies (4.1) for some a then it is the polynomial of best approxi- 

mation to yi on xi . 
This is a well-known theorem. For the proof cf. [15]. 
Now we can restate the minimization problem as follows: Find the polynomial 

p(x) that has degree at most k and satisfies p(O) =-1 so that Ij p (A)f I is minimal. 
We can estimate the error 11 p(A)f 11 by estimating 11 q(A)f 11 where q(x) is any 
polynomial satisfying: q(O) = -1. In view of Theorem 2.1 a good choice of q(x) 
will be the polynomial that has least deviation from zero on ,. In order to find it 
let us consider the polynomial of best approximation to -1 on 0 and to 0 on Ai, 
i 1, 2, *.* , k + 1 (k + 2 points in total). Define a polynomial r(x): 

k+1 H (X - p 
r(x) = E (-1) ' Ij 

j=l H (,Oj -H 

It is easy to see that r (.j) - (-1)' and that q(x) = -r(x)/r(0) is the desired 
polynomial so we have: 

THEOREM 4.2. Let g be the approximate solution of Ax - f which is constructed by 



ESTIMATES FOR COMPUTATIONAL TECHNIQUES IN LINEAR ALGEBRA 373 

the conjugate gradients method. Then: 

lk+1 i - 

(4.2) \g A-f 11 - I II 

isi 

where Ait are the eigenvalues of B. 
If we define T(x) to be the polynomial that has the least deviation from 0 on 

the interval [Amin i.'max] and satisfies T(O) = -1 we can use it to get a simpler 
estimate than (4.2). If the deviation from zero is e, then I T(,u) E < e and we may 
apply Theorem 2.2. It is well known that: 

-T(x)a= Tk(yra:+ Amin _ 2 /mxx)[T (a + 2min: 
lsmax - Asmin lsmax - Asmin lsmax - Asmin 

and that the deviation E is the last factor. So we get: 
THEOREM 4.3. Under the hypotheses of Theorem 3.2 the following is true: 

(4.3) 11 Ag-f 11 <= Tkimax + Amin f 
lsmax - Asmin 

It is obvious that (4.3) is worse than (4.2). If we use inequality (2.2) we can reduce 
(4.3) to: 

.4) 11 g _ y 1 _ [Tk(max + Amin) (4.4) Ag -f 11 <[TkQr >i)i~max - fminif 

This result is known [13]. It can be established without using the auxiliary matrix 
B. It follows directly from Proposition 2.1. Certainly (4.4) is worse than (4.3). 
In the general case one can hope that (4.2) is considerably better than (4.4) as the 
following example shows: 

Example. If Xmin/Xmax is small, Aumin =Al < ,U2 < ... < '2k+l = Amax and Ai+?- 

Ai == d, then estimate (4.2) yields: 

lAg - f 11 <F" l (2k) 1 f "I ymax. k' 2 f 2 f 

LMmax k1 A.min 

Estimate (4.4) results in: 

lAg -fil ? +2~~~~~~~~~~~~/2- Ag - f 11 < [Tk maxc + Xmin) f1 2 (1 + 2 (;min ) lf 
- max - Xmin xmax 

The first estimate is obtained by taking into account only the middle term of 
(4.2), while the second estimate is obtained by approximating Tk(l + 6) by 
2(1 + (26) 12) 

k 

We did not assume a particularly favorable distribution. A look at (4.2) reveals 
that if two eigenvalues are close one to the other, then the right-hand side of (4.2) 
is very small. In the limiting case where the two eigenvalues coincide we get 

Ag - f 11 = 0. This result can be inferred from Theorem (2.2). 
Nevertheless, estimate (4.4) cannot be improved. This fact is known [13]. Let 

us use Theorem 3.1 in order to prove it. By the spectral decomposition theorem we 
can find for any operator A and any function f E H a positive measure V so that: 
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r max x max 
I =V dV = If 112; 11 q(A)f 112 = q(x) 2 dV 

p 
min 

fXmin 

for any polynomial q(x). So if we substitute in Theorem 3.1 Xinin for a, Xmax for 
A and 0 for -y we get that the right-hand side is equal to 

Tk((Xmax + Xmin)(Xmax - Xmin)) 

proving (4.4) and showing that it is the best possible. 
Still we have: 
THEOREM 4.4. If in (4.4) the equality sign holds for k = m then we get an exact 

solution for k - m + 1. 
Proof. If the equality sign holds it follows that FUmax Xmax . Let Bh = /Umax h 

hence: 

(Ah, h) 
Xmax = /.max =(Ahl 

h 

Therefore by the minimax principle h is an eigenfunction of A. By Theorem 2.3 it 
follows that A is invariant in Hk therefore there exists g E Hk so that Ag = f, 
(Observe that in (1.1) we minimuize the expression ilAh - f fl where h E Hk1 .) 

5. The Generalized Gradient Method. This method uses moments so like any 
other method of its kind [1] it detects only the eigenfunctions that are not orthogonal 
to the initial vector f. This means that we compute the eigenvalues of the restriction 
of A to some invariant subspace of H. In order to simplify the notations let us keep 
the same letter A for the reduced matrix. Therefore, we may assume that the eigen- 
values of A are simple and that f is not orthogonal to any eigenfunction. 

Let us denote the eigenfunctions of A corresponding to Xi+ and Xi- by (i+ and 
(i, respectively. We shall also denote the eigenfunctions of B = PA corresponding 
to 1ui+ and 1ui- by 4vi and 4/i-. First of all let us establish an estimate for the approxi- 
mation of the largest (smallest) eigenvalue. 

THEOREM 5.1. Let d denote the distance between Xmax and the rest of the eigenvalues. 
Let f be normalized: II f II = 1 and let b denote (f, 0max). Let k be chosen and B be con- 
structed. Then: 

> Xmax- Xmin rT Xmax - Xmin + dA] 
(5.1) Xmax Amax Xmax b2 L \maxXrind/j 

Proof. By the spectral decomposition theorem there exists a positive measure 
V that is supported by the interval [Xmin , Xmax - d] and the point Xmax so that: 

XrXax d 
1 lfll2f = 12 V b2+ dV. 

)m in 

r manc fl q(A)ffl2 - q2(Xmax)b2 + f Ia q(X)12dV. 
min 

Let us try to estimate Xmax by constructing a polynomial p(x) that has the degree 
at most k, satisfies: p(Xmax) = 1 and minimizes the expression f min d I p(x) 12 dV. 

Hence we have to use Theorem 3.1 for a =X min X Xmaxsd, y = Xmax and 
C = 11f112 - b2 to get: 
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( 5.2) f (Xmaxd X) 12 _ f 12b2) Xmax- Xmin + d -2 
xmin Xmax -Xmin- d 

Define now h p(B)f. We have: 

IXmax7d 

Xmax _ max (Ag, g) > (Ah, h) -max b2 + 
min 

x 
I 

P()12 d 

max m 11 g ll2 = 1 hl12 b2 
I 

mad i (X) 2 dV 
xmin 

(X max - Xmin) p(X)| dV 
> 

Xmax - Xmaxfd 

b2+J Ip(x)l2 dV min 
Taking (5.2) into account we get the right-hand side of (5.1). The left-hand side 
is obvious. 

Remark. Observe, as in Section 4, that for small d the rate of convergence is 
about (1 + (d/l Xmax 1)1/2)-2. 

We need now a lemma that will enable us to take advantage of a particular 
distribution of the eigenvalues. 

LEMMA 5.1. Let the eigenvalues of A be divided into three sets: L having 1 elements; 
M and the set consisting of xj+ only. Let any eigenvalue in M satisfy: 

xi < xi+ 
E 

Xi E M. 

Let us denote by dj the distance between Xi+ and M and by ymin the smallest eigenvalue 
belonging to M. Let bj denote (f, pj). Let k be chosen and Hk be constructed. Under these 
conditions there exists g E Hk: 11 g 11 = 1 so that: 

(Ag, g) > (xi - 'ymin)[bj H1 ( - i)] 2 
(5.3) 11g12XiEL 

[j 
- 

+-zmin - dj) 

Proof. Consider fL = FiE, iL (A - J)f and consider the iterates A fL . For 
any j and any i: Xi E L, AjfL is orthogonal to 4i . Therefore we may consider in- 
stead of H the subspace WI which is the orthogonal complement of all 4i : Xi E L 
and A the restriction of A to 1H. Denote by Hk(L) the span of {fL, AfL, 

AklfL}; by PL the projection on Hk(L) and by BL the restriction of PLA to Hk(L). 

We substitute now in Theorem 5.1 A for A; fL for f; k - 1 for k; Hk(L) for Hk 
and BL for B. By the proof of Theorem 5.1 we get that there exists g E Hk(L) 
satisfying (5.3). Since Hk(L) is composed of linear combinations of Aif, 0 < i < k, 
it follows that Hk(L) c Hk . Thus the proof is complete. 

Let us illustrate the use of Lemma 5.1 in the following: 
THEOREM 5.2. Let E denote the distance between Xmax and X2+; let d denote the dis- 

tance between Xmax and the rest of the eigenvalues then 

54 Xmax max> Xmax Xmax- Xmin rT Xmax - Xmin + d'l] 
(5.4?) Amax = gUmax = 1Xmax- 2b2 L * max - Xmin - dj 
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Proof. Take the set L to be X2+ and substitute in Lemma 5.1. 
We see in this example that if X2+ is close to Xmax then the rate of convergence is 

measured in terms of the distance to X3+. We start, of course, with a large initial 
error. 

As another application of Lemma 5.1 let us consider the approximation to the 
few largest eigenvalues. For that we need the following. 

LEMMA 5.2. Let X,+ = A,+ + qi where || qi= ei, let g E lk H 11 g f = 1 be or- 
thogonal to 4N+, 42, * * * 4-. Then: 

j-1 j-1 
(5.5) X.j+ > ,Uj+ >(A g) ji (Ag, g) - E X iA_ E +2 

j=1 j=1 

Proof. Express g as: g = gi + D.1 a4iVi where gq1 ?I+, i = 1, * , j-1. 
Taking scalar product with 44+ we have: 

I ai = I (g, Oi+) I = I (9,) Vi+ - 7j) I = I (g, ni) I (z. 

Since Vi+ satisfy (Aqli, h) = (Iuji,t'i, h) for any h E Hk we have: 
j=1 

(Ag, g) (Ag1, g) +_i= c < (Ag, ,gi) + 2 

119g 112 = 119g 112 + 119g 112 II g,S 112 +tlX t 

Since gi E Hk and is orthogonal to i+ we have by the minimax principle: ((Ag1, gq) 
* 11 gj 112)-1 < I.j+ from which the right-hand side of (5.5) follows. The left-hand side 
of (5.5) was proved in Section 2. 

We see that (5.5) involves errors in the eigenfunctions so we need a lemma that 
relates the errors in the eigenfunctions to the errors in the eigenvalues. 

LEMMA 5.3. Let Oj+ = i+ + qi where 11 ni 11 = ei, denote by dj the distance between 
Xj+ and the smaller eigenvalues, and let bj denote the error in the jth largest eigenvalues 
i.e. ej = -j+ - j+. Then 

j-1 

bj + (Xi+ _ X +)Ez2 j-E 
(5.6) 2< =1 2 

dji=1 

Proof. Express /j+ by: VKj+ = ai oyi+. In a similar way to the proof of Lemma 
5.2 we have for i j - 1 

l cI l = I ( 4+) I = I 4 vi+ + +.) I = I ( n*) I < 

So: 

j= -xX = x1+(Vp1+ qj+) - (A pj+, qj+) 
j-1 

(Xi+ - Xi+)ai2 + Z (Xi+ - Xi+)ai2 
i=1 i>j 

Therefore: 
j-1 

ej + Z (Xt - X)a 
P2 a2 ? = 

i>j dj 

Noting that Ej2 = i we get the desired result. 
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Remark. Observe that (5.5) and (5.6) relate errors in the eigenvalues to squares of 
errors in the eigenfunctions. 

Combining Lemmas 5.1, 5.2 and 5.3 we get: 
THEOREM 5.3. Under the conditions of Lemma 5.1 the following estimate holds: 

i-1 _-2 
_ 

+j > x- (b- 
Xmin) by II (Xi - 

(5.7) +d~ - 

* [Tj+l Xj - Xmin + dj) - E2 X- + 2 [Tkij+1 
\ d)j- Xi+E2 

Proof. Take in Lemma 5.1 the set L to consist of the eigenvalues X+ for i < j. 
The function g defined in (5.3) satisfies the requirements of Lemma 5.2. Therefore 
combining (5.3) and (5.5) we get the desired result. 

Let us compute these estimates in the following example: Xmax = 1.00, X2+ = 0.99, 
3+ = 0.96, Xi < 0.9 for i > 3 and Xmin = 0. Suppose, furthermore, that the com- 

ponents of f on the first three eigenfunctions have the absolute value 0.01. Then for 
k - 52 we have: 

AUmax ? 1 - (0.01.0.01x0.04)-2T50 I 0?i ) 

> 1 - 16 1. 1012 .2. (1.9)-100 > - 10-l6 

Hence (5 < 10-16; El2 < lo-14. 

2+ > 0.99 -\(0J01J0J010.03) *T50 I _ 0.09 - 10 

> 0.99 _ 9-1. 1012.(7)l?>09-?l ~ 0.9 - 9A1012(1.78<-100 > 0.99 -1013' 

Hence 52 < 10-13; E22 ? 3.1W212 
/ 

00 
-2 

1 -4 1 -2 
A3+ > 0.96 - (0.01 -0.03*0.04)-2.T50 (1 + 006 - 14 . 

+ _ ~~~~~~~1 - 0.06)-1--302 
> 0.96 - 12-2. 1012. (1.6)-100 > 0.96 - 10-10. 

Hence 53 < 1010; E32 ? 2.10-= 

If we use the power method we get 51 < 10-2. Therefore the method described 
in this paper may be considered wherever the matrices are large and the computation 
of the few largest (or smallest) eigenvalues is needed. 
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