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1. Introduction. One of the objections to the use of a one-step method to 
integrate a system of ordinary differential equations is that an estimate of the 
accumulated truncation error is difficult to make. If an attempt is made at ap- 
praising the truncation error, it is usually confined to an approximate evaluation of 
the local truncation error. A scheme for estimating the local truncation error, 
devised by Richardson [3], is based on the results of numerical integrations with 
steps h and hj2. The use of Richardson's extrapolation is well known (see, for 
example, [1, p. 81], [2, p. 238]). It is the purpose of this paper to show that it is 
possible to use the Richardson extrapolation procedure to form a useful estimate of 
the accumulated truncation error for a general one-step method even when the step 
size is allowed to vary. By using the estimate for the accumulated truncation error 
the accuracy of the numerical solution can be increased. Numerical examples to 
illustrate the estimation procedure are included. 

2. Problem Formulation. We use the results of Henrici [1] on the asymptotic 
behavior of the accumulated truncation error. Unless otherwise noted all capital 
letters in the following mathematical relations denote vectors or vector-valued 
functions and lower case letters denote scalars. 

Let the system of n differential equations be given by 

dY 
=F(x,Y) 

(2.1) dx F 
Y(a) = Yo, x E [a, b]. 

Let v(x) be a piecewise continuous function of x such that 0 < v(x) _ 1, where 
x E [a, b]. We define the mesh points Xk by 

xo= a, 

Xk+1 = min (b, Xk + hov(Xk)), k = 0, 1, 2, ... 

where ho is a constant basic stepsize. 
The differential equations (2.1) are integrated numerically from a to b using 

mesh points introduced by the function v(x). The one-step method is defined by 

(2.2) Yk+l = Yk + hov(xk)I(xk, Yk ; hov(xk)) 

where I is the increment function. 
We denote by Y(xk) the exact solution of the initial value problem defined by 

(2.1) at the mesh point Xk . The accumulated truncation error at the mesh point Xk 
is defined by 

(2.3) Ek = Yk - Y(Xk). 
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Let G(x) = (gij(x)) be a matrix with components 

_ afi (x, Y (x)) 
9ij(x) Y( ,j = 1, 2, n, 

where fi is the ith component of F. If the functions involved are sufficiently smooth 
then it is shown in [1, p. 131] that there exists a principal error function Q(x, Y). 
Henrici [1, p. 136] shows that if p is the exact order of the one-step method defined 
by I then 

(2.4) Ek = E(xk)hop + O(hop+') 

where E(x), called the magnified error function, is the solution of the initial value 
problem 

E'(x) = G(x)E(x) + [v(x)]PQ(x, Y(x)), 

E(a) = 0. 

Let Yn and Zn denote respectively the results obtained by integrating (2.1) twice 
from a to xn by (2.2) with basic step lengths ho and ho/i, where i > 1 is a constant 
and would for convenience normally be chosen as an integer. We use (2.4) to ex- 
press the accumulated truncation error as a weighted difference between Yn and Zn . 

It follows from (2.4) and (2.3) that 

Yn Y(xn) = E(xn)hop + O(hop+') 

Zn- Y(xn) = E(Xn)(ho/i)P + O(hop+'). 

Hence 

(2.6) Yn - Zn = (1 - ljip)E(Xn)hop + O(hop+'). 

From the first equation in (2.5) and (2.6) we obtain the equation 

En =iP_ 1 (Yn - Zn) + O(hop+'). 

By using (2.3) we obtain the Richardson extrapolation to the true solution at 
the mesh point Xn . 

Y(Xn) = i Zn- Yn + O(h P+'). 

The right sides of the relations 

(2.7) En ip _ (Yn- Zn) 

and 

(2.8) Y(Xn) ipZ Yn 

estimate, respectively, the accumulated truncation error and the true solution at Xn 
with an error whose order exceeds the order of the one-step method by one. 
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3. Computational Considerations. The above analysis assumed there was no 
round-off error. If Y,, and Zn are contamninated by round-off error which is com- 
parable in magnitude to the truncation error then the predicted accumulated trunca- 
tion error (2.7) may be unreliable. In practice one carries enough digits in the com- 
putation to made the round-off error negligible in comparison to the truncation 
error. 

FORTRAN IV programs utilizing double precision floating point arithmetic 
(approximately 16 decimal digits) were written for the IBM 7040 binary computer. 
The one-step methods considered were Euler's method [1, p. 9], the Heun method 
[1, p. 67], and the classical fourth-order Runge-Kutta method [1, p. 68]. The exact 
orders of the Euler, Heun and Runge-Kutta methods are p = 1, p = 2, and p = 4, 
respectively. A value of i = 2 was used in (2.7) and (2.8). The respective vectors 
YB and Zn were obtained by sim-ultaneous numerical integration of the system 
(2.1) with basic step size ho and the system 

dZ = F(s, Z), 

Z(a) = Yo, 

with basic step size ho/2. 

4. Numerical Results. Five differential equations whose solutions are known were 
considered. All of the data in the following tables is correct to the number of digits 
given. We denote the predicted accumulated truncation error by PF and the actual 
error in the extrapolated solution by T. where 

2P 
PI 2P _ ( Y,n Zn)X 2" - 1 

T= 2Z.- Y1 Y 

In the following examples, v(x) 1 unless stated otherwise. 
a. The initial value problem 

y'= -32xy In 2, 
(4.1) y(-1) = 2-10, x E [-1, 1], 

has the "peaked" solution 
y (x) = 28-16x2 

The Euler, Heun and Runge-Kutta methods were used to compute the numerical 
solution of (4.1) on the interval [-1, 1]. For the Heun method a variable step size 
introduced by 

x <K 
,(8 -1 

< X < I8 
l-ll6 _ 

< X < 
4, 

V(X) 1= 2 
< X 

< 
3 

3 < X < 
4 
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TABLE 1 
Euler's method, ho = 2-10 

Xn En Pn Tn 

0.0 -4.238 -4.142 -0.9533 X 10-' 
1.0 -0.1263 X 10-s -0.1220 X 10-' -0.4359 X 10- 

TABLE 2 
Heun method, ho = 2-8 

Xn En Pn Tn 

0.0 -0.6982 X 10-2 -0.6884 X 10-1 -0.7499 X 10- 
1.0 0.2277 X 10-4 0.2324 X 10-4 -0.5699 X 10- 

TABLE 3 
Runge-Kutta method, ho = 2-10 

Xn En Pn Tn 

0.0 -0.4274 X 10- -0.4252 X 10-1 -0.2253 X 10-9 
1.0 0.2035 X 10-12 0.2103 X 10-12 -0.6784 X 10-1 

was used. The computational results are presented in Table 1, Table 2 and Tab] 
b. The initial value problem 

y" + (l6ire-2x -)y = 0 

(4.2) y (0) = 1, y'(0) - 2, x E [0, 20], 

was integrated over the interval [0, 20] by the Runge-Kutta method. The solutio 
(4.2) is 

y(x) = eX12 cos (4ire'). 

The numerical results for this example are listed in Table 4. 
c. We consider the initial value problem 

y = y/x - (1/x) cos (1/x), 

(4.3) yy(-1) = sin 1, x E [-1, -2-5], 

which has the highly oscillatory solution 

y(x) = x sin (1/x). 

The Heun method with 
- x < -4, 
3 < X < -2 

V(X)~~~~ ~ =4 - <- v(x) < ~~x < -1 

-1 < x < -2-4, 

1 -2 4 < X < -2-5 
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TABLE 1 

Euler's method, ho = 2-10 

Xn En Pn Tn 

0.0 -4.238 -4.142 - 0.9533 X 10-1 
1.0 - 0.1263 X 1O-' -0.1220 X 10-3 -0.4359 X 10-5 

TABLE 2 
Heun method, ho = 2-8 

Xn En Pn Tn 

0.0 -0.6982 X 10-2 -0.6884 X 10-2 - 0.7499 X 10-1 
1.0 0.2277 X 10-4 0.2324 X 1O-4 -0.5699 X 10-6 

TABLE 3 

Runge-Kutta method, ho = 2-10 

xn En Pn Tn 

0.0 -0.4274 X 10-6 -0.4252 X 10-6 - 0.2253 X 10-9 
1.0 0.2035 X 10-12 0.2103 X 10-12 - 0.6784 X 10-14 

was used. The computational results are presented in Table 1, Table 2 and Table 3. 
b. The initial value problem 

(.) + (l67re-2x - )y= 0 
(4.2) 

y(0) = 1, y'(0) 21, x E [0, 20], 

was integrated over the interval [0, 20] by the Runge-Kutta method. The solution of 
(4.2) is 

y(x) = ex/2 cos (47re-x). 

The niumerical results for this example are listed in Table 4. 
c. We consider the initial value problem 

y y/x - (1/x) cos (1/x), 
(4.3) 

y(-1) = sin 1, x E [-1, -2-5], 

which has the highly oscillatory solution 

y(x) -x sin (1/x). 

The Heun method with 

01 -1 < X < 
3 

-i 3 < X < K 2 4 ~= 2i 

V(X) 4 - x < _41 
1- 1 -1 < X < -2 

_1-4 < , 4' 
1 -4 < X <~~- 
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TABLE 7 
Ileun method, ho = 2-4 

X,, E.F PI An 

0.750 0.1255 X 10-2 0.1242 X 10-1 0.1332 X 10-1 
0.500 0.6663 X 10-2 0.6565 X 10-1 0.7220 X 10-1 
0.250 0.4935 X 10-' 0. 4780 X 10-1 0.5776 X 10- 
0.125 0.2408 0.2214 0.3466 
2--4 0.8030 0.6452 1.848 

TABLE 8 
Heun miethod, ho = 2- 

Xn EPn An 

0.750 0.8209 X 10-' 0.S190 X 10-4 0.8324 X 10-4 
0.500 0.4433 X 10-4 0.4420 X 10-s 0.4513 X 10-3 
0.250 0.3505 X 10-' 0.834S6 X 10-1 0.3610 X 10-1 
0.125 0.2042 X 10-1 0.2019 X 10-1 0.2166 X 10- 
2-4 0.1000 0.9693 X 10-1 0.1155 

TABLE 9 

Heun method, ho = 2-4 

Xn En Pn An 

0.750 0.1255 X 10-2 0.1242 X 10-2 0.1332 X 10-1 
0.500 0.3828 X 10-2 0.837S9 X 10-2 0.4053 X 10-1 
0.250 0.1691 X 10-1 0.1670 X 10-1 0. 1802 X 10- 
0.125 0.6637 X 10-1 0.6515 X 10-1 0.7251 X 10-1 
2-4 0.2426 0.2324 0.2902 

solution. The magnitude of the round-off error seems to be comparable with the 
truneation error for step sized smaller than 2-16 in this example. 

e. All equations for which numerical results have been given are linear. We 
consider a nonliniear equation in this case. The solution of the initial value problem 

y' 2xe-8 
(4.5) y4 

Y(M) = 0, x E [2-, 1], 

is 

y(x) = 2- ln x. 

For the Heun method, Henrici [1, p. 78] derives an expression for the principal 
error function. A short calculation yields 

Q(x,y) - 2 
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for the initial value problem (4.5). The corresponding magnified error function is 

(4.6) E(x) = [v(t)]2. 

Let An be defined as 

An- ho2 E(xn) 

where E(xn) is defined by (4.6). In Table 7 and Table 8 we compare En, Pn and 
An for the initial value problem (4.5) when v(x) -1. 

In Table 9 we exhibit the agreement of An with En and Pn when 

01 4 = 
I < 
2 X < 3 

V(Z) I 
< 

4 < 21 
1 

8 < X < 4, 
1-6 = 46_7 
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