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onie fincds X'( = 0.45016, X(2) = 0.498187, X - 0.49988, etc. The convergeiice of the 
sequence {X(P); to the true value v, = - is strongly suggested. 
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1. Introduction. The initegrals 
(0+) 

Ik (t) = (2ri) f 
eztz1-l(ln Z)k dz, Re t > O, 

occur in the asymptotic expanisions of the solutionis of heat conductioni problems in 
regions bounded iinternally by a circular cylinder [1], in problems oIn the flow of 
fluids through porous media [2], in electron slowing-dowin problems [3], and else- 
where. It should be recognized that these integrals are not in general the inverse 
Laplace transforms of zn-1(ln Z)k, since the contour does not surround the singularity 
occurrinig at z = 1 when k < 0. We will consider only cases where t is real and n 

and k are integers. For k nonnegative, the integrals can be expressed in terms of 
polygamma functions [2]. For nonnegative n and negative k, they can be expressed, 
by means of change of variables and integrations by parts, in terms of derivatives of 
Ramanujan's integral [4], 

00 

IR(t) = f -txx- (72 + hi2 x) -1 dx. 

This function is in turn related to the n-functioins of Volterra and others [5, 6], 
which are useful in the solution of certain integral equations. In this paper, we discuss 
properties and numerical values of Ramanujan's integral, its derivatives, and the 
related contour integrals. 

2. Relation to Other Integrals. Using the recurrence relations 

(la) dIk(t) Idt = n 
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and 

(lb) tIlk(t) = -kjok-l(t)' 

the Ink integrals with k < 0 of most common occurrence are easily related to 
integrals along the positive real axis as follows: 

(2a) -I-1 =I ; 

(2b) -Io-, = tIR('); 

(2c) - Il 1 = IR (1); 

(2d) -I1-2= IR(1) + tIR;(2) 

(2e) -I2 1= IR(2); 

(2f) -I2 = 2IR(2) + tIR(3); 

(2g) - 2I23 = 4IR(2) + 5tIR(3) ? tIR; 

where the arguments have been suppressed, and IR(n) indicates, the nth derivative 
of IR . 

The derivatives of IR may be expressed in terms of the "overcomplete" v-func- 
tions [6] according to the relation discovered by Ramanujan [4] 

(3) IR (t) = et - f tdx 

(Ramanujan in fact proved the more general identity 

tx -j f -1-- tx( sin 7r~ 1 dx =t. J l7(1 t+) dx + x e COS 7w- I X) 2 + 2 X= e 

Hardy [4] states that the conditions for the validity of this formula are t > O , > 0. 
The conditions should actually be t > 0, t > 0 and t = O, 0.) From this rela- 
tion we may derive the result 

(4) eIR(t) = f dy F(y, t)/F(y), 

where F(y, t) is an incomplete gamma function [7]. 

3. Asymptotic Expansions. Ritchie and Sakakura [2] have given asymptotic 
expansions for the integrals Ink while an expansion for IR was given by Spencer and 
Fano [3]. By the method of the latter article we may obtain asymptotic expansions 
for the derivatives of IR having the form 

( _on ()(t) 17(n) O (i ? 1)An;i(t) 
(5) (-I)~JR~~~(t) w2 + 1n2 tr () (72 2 1nA t)i 

The first few coefficients An;i(t) are given in Table I. 

4. Numerical Values. In lieu of presenting extensive tables of values, we give 
in this section some graphs and a discussion of methods of calculation of IR and its 
derivatives. A discussion of approximations is given in the next section. 
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TABLE I 

Coefficients in asyinpiolic expansion olf tnI (n) 

i F ~~~~~~~~~An;i(t) 

0 1 
1 i 6,(n) 111t 
9 

(4,22(n) + 4.(1) (n)) (7,2 3 + In' t) 
3 (+,3(n) + 3a4(n)t,(1)(n) + ,-(2)(n)) 1In' t 

A1(z) - d In F(z)/dz; ,(i)(z) = dii(z)/dzj. 

The most straightforward way of calculating IR(t) for any argument seems to be: 
(i) change the variable of integration to v = tx, (ii) split the range of integration 
into two parts, and (iii) eliminate the singularity in the integrand at the origin by 
the transformation eV -v 1 + (e-v - 1). Thus we have 

(6a) IR( t)= IR1 + IR2 + IR3; 

(6b) IR1 = --7r 1 tan-1((ln 2t)/ir); 

(6c) IR2 = -f2 (1-ev) dv 
UC) 'R2 - J0 ~~~(r2 ? ln2(V/t)) V 

I dv 
(6d) 1R3 /2 (r2 + ln2(v/t)) v 

The range of integration is split at v = 2 only because this value seems to work fairly 
well; no attempt has been made to optimize this parameter to a high degree of ac- 
curacy. The term IR3 may be obtained by Gauss-Laguerre quadrature, 32-point 
quadrature [8] giving at least 6 decimal place accuracy, while IR2 is calculable by a 
brute-force method, such as using Gauss-Legendre quadrature in successively 
smaller subintervals until the desired accuracy is obtained. Figure 1 is a graph 
of IR(t). 

The derivatives of IR (multiplied by an appropriate power of t) may be cal- 
culated in a similar way; however, since there is no longer a singularity in the in- 
tegrand, one may consider the accuracy of a 32-point Gauss-Laguerre quadrature 
over the entire range of the integral. It turns out that one may obtain tIRM') correct 
to 4 decimal places this way, and the higher functions tnIR(n) correct to 5 d.p. Curves 
of (-t)nIR(n)(t)/r(n) for n = 1, 2, 3, 4 are shown in Figure 2. 

Values of those contour integrals Ink(t) which are not trivially related to func- 
tions already graphed are shown in Figure 3. 

5. Approximations. Because of the occurrence of infinite derivatives at t = 0, 
it is not particularly easy to find simple rational approximations to these functions 
useful over the entire range of t. By excluding a small region near the origin, how- 
ever, one may obtain reasonably accurate approximations; for instance, 

3 

(u - uo) L ai 

(7) IR2 + IR3 -- 2- 

( + u2) + Uo) Zbi us 
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FIG. 1. Ramanuj an's integral IR(t) f f e-txxl(7r2 + ln2x)-' dx. 
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FIG. 3. Some of the contour integrals I; (t) = (2ri)-1 f ?+) ezizn-(ln z)k dz. 

TABLE II 

Parameters in approximation to IR2 + IR3, Eq. (7) 

UO .12943 

ao .07470061 
a, 3.89739242 
a2 .01585440 
a3 .002866198 

bo 2.97733011 
bi 8.86799361 
b2 1.0 

where u = In (1 + t) and the parameters are given in Table II, with an error 
<.0005 in absolute magnitude over the range .003 < t < oo. For t > 5, the mag- 
nitude of the error is <.000025. The error at the origin is .00254. This result was 
obtained using a slight modification of Stoer's direct method [9]. It should not be 
considered a best fit in the Chebyshev sense, though, as the error curve is of far from 
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standard form. Sinmilar approximations may be obtained for the higher-order 
functionls t"IR(n), but tione will be presented here since these functions can be com- 
puted about as easily by Gauss-Laguerre quadrature, as previously described. 

6. Acknowledgment. I should like to thank Dr. R. P. Kenan for his assistance 
and suggestionis concerning computer programming and other aspects of this work. 

Battelle Memorial Institute 
Columbus, Ohio 

Note on the Calculation of Fourier Series 

By Philip Rudnick 

Cooley and Tukey have recently presented an algorithm for the machine cal- 
culation of Fourier series [1]. In this connection mention should be made of the 
similar method described by Danielson and Lanezos [2]. Although the latter is 
less elegant and is phrased wholly in terms of real quantities, it yields the same 
results as the binary form of the Cooley-Tukey algorithm with a comparable 
number of arithmetical operations. 

A small-computer program has been written in this laboratory which uses the 
Danielson-Lanezos method with one minor modification, described below.* In this 
form cosine and sine series may be evaluated independently of one another, and as 
with the Cooley-Tukey process, the calculation can be performed by replacing 
input data with results, without any substantial storage requirement beyond that 
set by the original number of input coefficients. The procedure used is readily 
extensible to the computation of [(N/2) + 1] cosine and [(N/2) - 1] sine sums, 
from an original sequence of N real numbers, where N is any power of 2 greater than 
the fourth. Two executions of this procedure will yield values for a set of N com- 
plex Fourier series of N terms each, and can be accomplished by N[log2 N + 3] 
real multiplications and 7N/2[10g2 N - 23/7] real additions. For the same task the 
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