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Maximization of a Second-Degree Polynomial 
on the Unit Sphere 

By James W. Burrows* 

I. Introduction. Let A be a hermitian matrix of order n, and a be a known vector 
in Cn. The problem is to determine which vectors make b(x) = x*Ax - 2 Re {x*a} 
(* denotes conjugate transpose) a maximum or minimum on the unit sphere 
S = {x: x*x = 1}. 
[1] considers finding the similarly constrained maximum or minimum of 
(x - b)*A(x - b) where b is a known vector. We have 

(x - b)*A(x - b) = x*Ax - b*Ax - x*Ab + b*Ab 

= x*Ax -2 Re {x*Ab} + b*Ab 

so with a = Ab, the problems are seen to be equivalent unless A is singular, in 
which case our formulation is more general. This formulation also seems to lead to 
simpler proofs. 

II. Computation of Extremal Vectors. Let U be the unitary transformation which 
diagonalizes A, i.e., if x = Uy, then 

(2.1) x*Ax - 2 Re {x*a} = y*U*AUy - 2 Re {y*U*a} = y*Ay - 2 Re {y*c}, 

where c = U*a and A - diag {Xi, ... , Xn, with real Xi . It is thus equivalent to 
find the maximum or minimum of 

n r n " 

(2.2) ,6(y) = i I yi 12-2 Re E ciyif 

with the constraint 
n 

(2.3) E i yti2=1. 

Construct 
n fn n 

(2.4) 
x 

(Y) Xi i yi 2 2Ret Cigi 
X 
Iyi- 1Yi2 

i=l t i= )Ji = l 

where stationarity with respect to complex y requires that the Lagrange multiplier 
X be real (cf. [1], p. 30). An extremal vector then satisfies the equation 

0 = 2grad x(y) = Ay - c - Xy = 0 

or 

(2.5) (Xi - X)yi = ci, i = 1, * ,n. 

If we solve this formally for yi and substitute into (2.3) we are led to consider the 
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real roots of the equation 

(2.6) g(X) = 1 

with 

(2.7) g(X) = (X 
I 

Xi) 
j=i (X - X) 

A primed summation sign means terms with ci = 0 are dropped, whatever the value 
of X -i . Two cases can occur: 

Case I. X is a real root of (2.6) and X $ Xi for all i. Then (2.5) gives the compo- 
nents of an extremal vector yx associated with X. 

Case II. For some k, g(Xk) < 1. This requires ci = 0 for all i such that Xi = Xk. 

To obtain the components of an extremal vector YXk associated with Xk , solve (2.5) 
for yi if Xi $ Xk , then select any yi for i such that Xi = Xk SO that 

(2.8) Iy;I = 1 - g(Xk). 
i:Xi=Xk 

Then both (2.5) and the constraint (2.3) are satisfied. 
THEOREM. Let Xj be the largest eigenvalue of A for which g(Xj) < 1. Let X be the 

largest root of (2.6) with X $ Xi, i = 1, * , n. The quadratic polynomial i(y) is 
maximized by a vector associated with the larger of X and Xj . 

PROOF. For real X $ Xi, i = 1, ... , n, let the components of yx be given by 
(2.5), then 

41 (yx) Xi (ICij- 2Re ICi-X2 
= E l l (X - X)2 e_ - 

(2.9) E2i - 
i 

+ 
X 

i= X,X)2 i= X-W 

i=1 X t X n 1ICi 12 

i=Xg(X) 
+ E l 

71 X -Xi 

If X is a root of (2.6), then 

(2.10) XI(yx) = X + E 
i=1 X- Xi 

If X = Xk and the other conditions of Case II are fulfilled, then the value of V/(yx) for 
X = Xk iS calculated by priming the summation sign in (2.9) and adding 

Xk Z | iy 2. 
i:Xi=Xk 

We then have 

(2.11) /t(yX) = Xg(X) + I ci 2 + Xk E i 12 X + ci 12 
i=l X - Xi i:X1Xk i=l x - i 

When X 5 Xi for all i, (2.11) is the same as (2.10). Therefore, (2.11) is true for all 
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extremal vectors. To complete the proof, let A, v be two values of X which satisfy the 
conditions of either Case I or Case II, and suppose A > v. Then 

n ci2 n I 1 2 

\6ys- ht(yV) = ,U + L' lcilj _ - _ , c. 2C 
i= U-Xi i=l1 -W 

= y- V+ EI Ci 12 ( 1 - 1 ) 

+ =1 ,U - v i V - xi 

1 1 2 v - 

_-O( - v) +2gM +-I() 1(u-A( i0 

>_ - 

(-V l i [ _ i)+(V_)2 (- )( AI) 2 O. 

Therefore, if(yx) increases for increasing X which satisfy either Case I or Case II. 
This proves the theorem; a similar statement about the minimum of the polynomial 
is easl.y proven. 

III. An Application. Let (x, y, z) be the position vector of a target in a coordi- 
nate system attached to a rolling ship and (x, y~, z) the target's inertial velocity 
vector in the same coordinates. Consider the angular accelerations of a gun tracking 
this target. The gun has the usual two degrees of freedom: a train axis perpendicular 
to the deck and an elevation axis perpendicular to the train axis. Let 0 be the train 
angle. The parts of the train angular acceleration 0 which contain the target velocity 
are 

(3.1) 
O(x y, z) = 2(x2 + y2)-2{xyGiz2 - 

82) 
- ?y8(x2 - y2) 

+ R[z(y -X2) - 2xyzy]} + 2Rx(x2 + y2y-l 

*~~~~~~~~~~~ 2 

where R is the roll rate (assumed to be about the x-axis). The last term can be recog- 
nized as a component of the Coriolis acceleration. The remaining terms can be com- 
puted by considering the relative motion in a nonrotating system (i.e., take two 
derivatives of y = x tan 6). The problem of maximizing the entire expression as a 
function of x~, y~, z with x2 + y2 + z2 = 1 and fixed x, y, z, R is of the type considered, 
with A singular. In fact, 

(3.2>) A = 2 v(2 + y2)2 + y2) -E 
, 8 

and 

(3.3) a* -(A2 + y2V)2C(z(y2 - x2)2-2xyz, x(22 + y2)). 

Further computation yields 

(3.4) x, = - (x2 + X)12 = (X + y2), X3 = 0; 
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x - y x + y 0 
(3.5) U = [2(x2 + y2)"]-12 + y y -x 

\ O O [2 (x2+ 2j )]1/ 

(3.6) * = a*U = -(2)-1/2(x2- y2)-312J(_-z(x + y), z(y -x), 

x[2(x2 + y 2)]"2). 

Therefore, 

(X2 + y2)J = Y22 
2 

y12 + R(2)12(x2 ? y2j"2 
(3.7) X 212 ( (-z(x + y)y1 + z(y - X)Y2 + x[2(x ? y Y)]"23). 

After neglecting the fixed factor x2 + y2, 

2g(X) = z2(x + y)2 z2(y -x)2 2x2 
(2 (X2 + y2)(X + 1)2 (x2 + y2)(X - 1)2 X2 

In the general case, when none of the numerators are zero, the problem is solved by 
finding the largest real root of (3.8) with g(X) = 1. Classical root calculation pro- 
cedures, such as Newton's method, should encounter no difficulty. If one or more of 
the numerators are zero, the computation is simpler. For example, if z = 0, 
g(X) = R2x2/X2 and Case I applies ifX = jRx > 1. Then y, = Y2 = O, Y3 = ? 1; if 
I Rx I < 1, then Case II applies and yi = 0, Y2 = (1 - R2x2)"2, y3 = Rx. The geo- 
metric interpretation of this is that the Coriolis term predominates for large x 
values. 

Questions Concerning Khintchine's Constant 
and the Efficient Computation of Regular 

Continued Fractions 

By John W. Wrench, Jr. and Daniel Shanks 

Let x be a real number whose regular continued fraction is given by 

(1) x = aO + 
a, + a2 + a3+ 

with ao an integer, and a1, a2, a3, . . . positive integers. Let 

(2) G.(x) = (al a2 a3 an) 

Then Khintchine's famous theorem states that, for almost all x, 

(3) Lim Gn(x) = K, 
nRJ 2 
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