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Maximization of a Second-Degree Polynomial
on the Unit Sphere

By James W. Burrows™

I. Introduction. Let A be a hermitian matrix of order n, and a be a known vector
in C™. The problem is to determine which vectors make ®(z) = 2*4Az — 2 Re {z*a)
(* denotes conjugate transpose) a maximum or minimum on the unit sphere
S = {z: 2% = 1}.
[1] considers finding the similarly constrained maximum or minimum of
(z — b)*A(z — b) where b is a known vector. We have

(z — b)*A(x — b) = ™Az — b Az — 2™Ab + b*4b
= 2¥Az — 2 Re {2¥4b} + b*4b

so with @ = Ab, the problems are seen to be equivalent unless A4 is singular, in
which case our formulation is more general. This formulation also seems to lead to
simpler proofs.

II. Computation of Extremal Vectors. Let U be the unitary transformation which
diagonalizes 4, i.e., if z = Uy, then

(2.1) z*4z — 2Re {z*a} = y*U AUy — 2 Re {y*U*a} = y*Ay — 2 Re {y*c},

where ¢ = U*a and A = diag {\i, - -, \.}, with real \; . It is thus equivalent to
find the maximum or minimum of

(2:2) ¥(y) = ; Nelys* — 2 RB{; Ci?]i}

with the constraint

(23) Slul=1

Construct

(24) x0) = Enlul — 2Re{ S et 2 [usl

where stationarity with respect to complex y requires that the Lagrange multiplier
\ be real (cf. [1], p. 30). An extremal vector then satisfies the equation

0=3gradx(y) =Ay —c—M =0
or
(2'5) ()\, i x)yi = Ci, 1: = 1, cee, M.

If we solve this formally for y: and substitute into (2.3) we are led to consider the
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real roots of the equation

with
_ n , lCi|2
(27) g()\) = é m

A primed summation sign means terms with ¢; = 0 are dropped, whatever the value
of A — \; . Two cases can occur:

Case I. \ is a real root of (2.6) and N # \; for all 7. Then (2.5) gives the compo-
nents of an extremal vector y, associated with A.

Case I1. For some k, g(N\;) = 1. This requires ¢; = 0 for all 7 such that \; = ;.
To obtain the components of an extremal vector y», associated with \; , solve (2.5)
for y: if \; # N\, then select any y. for 7 such that A; = A4 so that
(2.8) 2wl =1—=g0).

TN =g
Then both (2.5) and the constraint (2.3) are satisfied.

TuEOREM. Let \; be the largest eigenvalue of A for which g(N\;) =< 1. Let \ be the
largest root of (2.6) with N #= N\, ¢ = 1, - -+, n. The quadratic polynomial Y(y) is
maximized by a vector associated with the larger of A and \; .

Proor. Forreal A & \;,¢ = 1, -+, n, let the components of y, be given by
(2.5), then

n

= 101| lei |2
‘//(Z/x) Z )\ )\) — 2 Re {Z ‘—)\}

=1 A —

glc’ [ x)z_xzx]

(2.9) | |
c1 c1
=2 ; v ; gy
_ le:
M) + ; v
If X is a root of (2.6), then
(2.10) s =+ 3 ol

If A = A\, and the other conditions of Case II are fulfilled, then the value of y(y») for
A = M\ is calculated by priming the summation sign in (2.9) and adding

N2 wn

TN =N

We then have

211) v =2 + 2150 e =+ Y L

TN =N, =1 A — >\1

When M\ # \; for all 7, (2.11) is the same as (2.10). Therefore, (2.11) is true for all
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extremal vectors. To complete the proof, let u, » be two values of A which satisfy the
conditions of either Case I or Case II, and suppose u > ». Then

W) = ¥(y) = u + ; #|f vinid ;:; ,%
=M_V+iz=1l|0il2<u—l)\¢_v—1)\i)
o _lc—l2]
= (u =) [1 ; (B = N)(r — N)
z(u—V)[ g(u) + 5 g(ﬂ) ;W—KIC)_TL—:T)]

1 o, 9 1 1 2

25 =v) 2 el [(M—M)2+(V—>\i)2_(#—M)(V—N):I
= 0.

Therefore, ¢(y») increases for increasing N which satisfy either Case I or Case II.
This proves the theorem; a similar statement about the minimum of the polynomial
is easily proven.

III. An Application. Let (z, y, 2) be the position vector of a target in a coordi-
nate system attached to a rolling ship and (&, y, 2) the target’s inertial velocity
vector in the same coordinates. Consider the angular accelerations of a gun tracking
this target. The gun has the usual two degrees of freedom: a train axis perpendicular
to the deck and an elevation axis perpendicular to the train axis. Let 6 be the train
angle. The parts of the train angular acceleration § which contain the target velocity
are

b(,7,2) = 2(c" + y") ay(&" — ) — ay(@® — v°)
+ Blz(y* — 2%)& — 2xyzyl} + 2Rz(2® + yz)_lé,

where R is the roll rate (assumed to be about the z-axis). The last term can be recog-
nized as a component of the Coriolis acceleration. The remaining terms can be com-
puted by considering the relative motion in a nonrotating system (i.e., take two
derivatives of y = x tan 6). The problem of maximizing the entire expression as a
function of &, y, 2 with #* + * + &° = 1 and fixed z, y, 2, R is of the type considered,
with A singular. In fact,

(3.1)

xy 1@ =9 0
(3.2) A =2+ )7 =3 + ) —ay 0
0 0 0
and
(3.3) a* = — (& + )R — 2°), —2aye, 2(2 + ).

Further computation yields

(3.4) M= — (@) =@+ )7 N =0;
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x—y x+vy 0
(3.5) U=+ e+y y—2= 0 ;
0 0 [26" + )"
(36) ¢ =d'U = —(2)7C" — ) R(—2(x + y), 2(y — @),

z[2(2® + H]).
Therefore,
@+ W =y’ —u’ + R+ HT
(=z(e 4+ Yy + 2y — D)y + 222" + )] s).
After neglecting the fixed factor z* 4 ¢/,

29(\) 2z +y)° n dly — ) I 27°
B @0+ @+ -1 N

In the general case, when none of the numerators are zero, the problem is solved by
finding the largest real root of (3.8) with g(A) = 1. Classical root calculation pro-
cedures, such as Newton’s method, should encounter no difficulty. If one or more of
the numerators are zero, the computation is simpler. For example, if z = 0,
g(\) = R*%*/\" and Case I appliesif A = | Rz | = 1. Theny, = o = 0,y; = +1; if
| Rz | < 1, then Case IT applies and y; = 0, y» = (1 — RB*%*)"*, ys = Rz. The geo-
metric interpretation of this is that the Coriolis term predominates for large x
values.

(3.7)

(3.8)
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Questions Concerning Khintchine’s Constant
and the Efficient Computation of Regular
Continued Fractions

By John W. Wrench, Jr. and Daniel Shanks

Let = be a real number whose regular continued fraction is given by

1 1 1
(1) Tt a b ata

with ao an integer, and a;, a2, as, - - - positive integers. Let
(2) Go(x) = (a1 - as - ag- -+ - an)'™
Then Khintchine’s famous theorem states that, for almost all z,

(3) Lim G,.(z) = K,

n—->x0
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