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x - y x + y 0 
(3.5) U = [2(x2 + y2)"]-12 + y y -x 

\ O O [2 (x2+ 2j )]1/ 

(3.6) * = a*U = -(2)-1/2(x2- y2)-312J(_-z(x + y), z(y -x), 

x[2(x2 + y 2)]"2). 

Therefore, 

(X2 + y2)J = Y22 
2 

y12 + R(2)12(x2 ? y2j"2 
(3.7) X 212 ( (-z(x + y)y1 + z(y - X)Y2 + x[2(x ? y Y)]"23). 

After neglecting the fixed factor x2 + y2, 

2g(X) = z2(x + y)2 z2(y -x)2 2x2 
(2 (X2 + y2)(X + 1)2 (x2 + y2)(X - 1)2 X2 

In the general case, when none of the numerators are zero, the problem is solved by 
finding the largest real root of (3.8) with g(X) = 1. Classical root calculation pro- 
cedures, such as Newton's method, should encounter no difficulty. If one or more of 
the numerators are zero, the computation is simpler. For example, if z = 0, 
g(X) = R2x2/X2 and Case I applies ifX = jRx > 1. Then y, = Y2 = O, Y3 = ? 1; if 
I Rx I < 1, then Case II applies and yi = 0, Y2 = (1 - R2x2)"2, y3 = Rx. The geo- 
metric interpretation of this is that the Coriolis term predominates for large x 
values. 

Questions Concerning Khintchine's Constant 
and the Efficient Computation of Regular 

Continued Fractions 

By John W. Wrench, Jr. and Daniel Shanks 

Let x be a real number whose regular continued fraction is given by 

(1) x = aO + 
a, + a2 + a3+ 

with ao an integer, and a1, a2, a3, . . . positive integers. Let 

(2) G.(x) = (al a2 a3 an) 

Then Khintchine's famous theorem states that, for almost all x, 

(3) Lim Gn(x) = K, 
nRJ 2 
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where K is an absolute constant given by 

(4) K = 2.685452001 *.. 

"Almost all" means, of course, except for a set of measure zero. Contained in 
this set of measure zero are, however, all rational numbers, all quadratic surds: 
(n, + (n2)112)/n3, the number e, since 

(5) e = 2 + 1 1 1 1 1 1 1 1 1 1 1 

and presumably much more. In a recent review [1] of two translations of Khint- 
chine's book Continued Fractions, the second-named author had occasion to make the 
ironic inquiry as to whether Khintchine's constant K is itself in the "almost all". 
The adjective "ironic" seems entirely appropriate here regardless of the (as yet un- 
known) answer to this question, for if K is not in the "almost all", the situation is 
truly ironic, in fact, one even might think, unjust; whereas if K is in the "almost 
all", one has the ironic situation wherein K to a million decimals, say, would have a 
continued fraction from which one could recover K to, say, three decimals. 

Several years ago, this second author had computed the first 30 partial quotients, 
ao to a3o 

(6)K 2 (6) 
K 2 + 

1~~~~1 + 2 + 5 + + 1 

using the value of K given in [2]. He found that they seemed smaller, in the (geo- 
metric) mean, than is usually the case, and were such that 

(7) G30(K) = 2.126. 

Put another way, the rational approximations to K, with denominators that are not 
too large, are not quite as good as those for almost all numbers. It seemed not un- 
reasonable, however, that this anomaly, based on the early approximations, could 
well disappear as later approximations were examined. But the problem seems to us 
quite infeasible theoretically, either now or in the near future. 

The first-named author has now tested this supposition by computing the first 
150 partial quotients, utilizing his [3] more accurate value of K. In Table 1, we list 
the partial quotients an for n = 0(1)150, and in Table 2 the geometric means, 
Gn(K), and the deviations, Gn(K) - K, for n = 10(10)150. It will be noted that 
the above-described anomaly is very persistent, and only disappears at the very end 
of our table. Of course, it is clear that nothing conclusive can be determined about 
the main question in this way, but at least it is fair to say that we no longer have any 
reason to believe that K is not in the "almost all". 

We now turn to the question of computing the ai in (1) efficiently, given some x 
to many decimal places. The most efficient method known has already been pub- 
lished [4], and it may seem that nothing more need be said. Nonetheless, it is a fact 
that this method is not well-known, and that many investigators have used, and 
continue to use, methods that are more obvious, but which require far more arith- 
metic, cf. [5]. Since this journal has as one of its purposes the analysis of efficient 
computation, it seems desirable to examine here the questions of why these less 
efficient methods are used, and wherein lies their inefficiency. 
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TABLE 1 

Partial quotients in the regular continued fraction for Khintchine's constant 

n 0 1 2 3 4 5 6 7 8 9 

0 2 1 2 5 1 1 2 1 1 3 
1 10 2 1 3 2 24 1 3 2 3 
2 1 1 1 90 2 1 12 1 1 1 
3 1 5 2 6 1 6 3 1 1 2 
4 5 2 1 2 1 1 4 1 2 2 
5 3 2 1 1 4 1 1 2 5 2 
6 1 1 3 29 8 3 1 4 3 1 
7 10 50 1 2 2 7 6 2 2 16 
8 4 4 2 2 3 1 1 7 1 5 
9 1 2 1 5 3 1 1 1 2 2 

10 2 1 13 11 770 1 4 2 1 14 
11 1 14 2 1 6 1 1 1 9 2 
12 53 1 2 2 1 9 5 6 2 1 
13 2 1 5 4 1 234 7 1 1 4 
14 3 19 3 1 10 18 8 24 1 12 
15 1 

TABLE 2 

n Gn (K) Gn (K)-K 

10 1.89590 -0.78955 
20 2.11174 -0.57371 
30 2.12606 -0.55939 
40 2.22084 -0.46461 
50 2.10320 -0.58225 
60 2.02209 -0.66336 
70 2.18395 -0.50150 
80 2.37681 -0.30864 
90 2.34452 -0.34093 

100 2.27432 -0.41113 
110 2.44835 -0.23710 
120 2.51097 -0.17448 
130 2.49488 -0.19057 
140 2.56242 -0.12303 
150 2.69503 +0.00958 

The obvious method of computing (1) is to set 

1 
(8) ao = x, an = [n n+ = - 

atn- an 

with [y] the integer part of y. The main arithmetic is the multi-precision division in 
the third equation of (8). Since this division requires a number of operations 
proportional to the square of the number of decimal places, it transpires that the 
expansion of (1) up to an, in this way, requires arithmetic proportional to n3, cf. 
[5, p. 278]. 

In contrast, consider x to be bounded by two rational numbers: 
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(9) ? < x < '?o 

for example 

(9a) 2685452001 K < 2685452002 
1000000000 1000000000' 

Then define 

cn = 
[Yn+2 

= 'Yn - CnYn+l, 
(10) e~~~~-n+l- 

b = 
[n]1_ = 13n- bn-n+lX 

and, it is easily seen, as long as bn = cnX they also equal the an of (8). This is, in 
fact, nothing but Euclid's Algorithm. Now, since cn(bn) are almost always single- 
precision numbers, the multiplications and multi-precision subtractions in (10) re- 
quire arithmetic proportional to the number of decimal places, and the previous 
n3 behavior is replaced here by only n2. 

We now think it pertinent to ask two questions, one psychological, and one 
logical: 

(a) Why is it that computers have repeatedly, as in [5], used (8) rather than 
the more efficient (10), even if they had much computing experience, and probably 
also knew of Euclid's Algorithm? 

(b) Wherein lies the loss of efficiency in (8)? On the face of it, it appears to be 
perfectly straightforward, and to involve no unnecessary operations. 

We believe the answer to (a) is this. The computer, when dealing with a high- 
precision irrational x finds it more congenial to imagine x as an "infinite" decimal 
number ao , as in (8), rather than as (the logically more exact) sequence of nested 
rational intervals, as exemplified in (9). It seems simpler to him, since only one a 
is needed, instead of two f's, X and two oy's. Further, his experience as a computer 
does not save him from the trap. On the contrary. He notes that the main problem 
in (8) is to devise an efficient technique of carrying out the multi-precision division, 
and, since he is probably proud of his computing skill, he now exerts himself in 
this direction, and then feels some satisfaction in whatever he accomplishes there. 

The answer to (b), which has profited at least some by being discussed with 
Professor Hans Zassenhaus, is this. In (8), we not only obtain the wanted quantities, 
ai, but we also obtain the unneeded decimal expansions of the ai . For example, if 
ao = K, we have 

ao = 2.685452001 ... 

(X1= 1.458891357 ... 

a2 = 2.179165034 ... etc. 

This is where the extra effort has gone to. If we wished to obtain these decimal ex- 
pansions from (10) we would need to carry out the multi-precision divisions of 
'Yn/'Yn+l = afn e 

Abstractly speaking, inefficient computations, (or the analogously similar, uu- 
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necessarily long proofs of theorems), are usually due to one of two phenomena: 
First, there is a true redundancy, whereby two phases of the computation (proof) 
merely cancel each other out. See [6] for the analysis of such a theorem proof. 
Secondly, the computation (proof) does more than is really needed, or wanted. See 
[7] for such a theorem proof. In our present case the inefficiency is clearly of the 
second type. 

Finally, we note that D. H. Lehmer, in [4], showed how most of the subtractions 
in (10) could also be eliminated. It is not necessary to compute every ./nyfl+' , but 
merely those at periodic intervals. It was his method that was used here in comput- 
ing Table 1. Any interested reader will now have no difficulty in determining pre- 
cisely how Lehmer manages to obtain this still greater efficiency. 

David Taylor Model Basin 
Washington, D. C. 20007 

Distributions of Mersenne Divisors 

By Sidney Kravitz 

By driving computers to the limit of their capability, 23 prime M\lersenne Num- 
bers have been discovered [1]. The list of known divisors on the other hand is a 
large one. As a result of both of these lists, conjectures have appeared regarding 
.the expected number of primes and of divisors [1], [21, [3]. This note presents addi- 
tional data relative to the observed frequency of divisors of Mersenne Numbers. 

Each divisor, q, of the Mersenne Number Mp = 2- - 1, p a prime, is of the form 
2kp + 1 and of the form 8L ?t 1. (Therefore k - 4n + 2.) Thus if k is known for a 
particular p, it identifies the divisor. The divisors of the Mersenne Numbers, 3 < p 
< 100,000 have been examined for k < 200. The frequencyf, with which the various 
values of k occur is given in Table 1. This table shows that the frequency of k 
tends to decrease as k increases, but those k with a large number of small divisors, 
e.g. 12, 24, and 60, occur with much greater frequency than their neighbors on the 
list. 
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